
T.Y.B.Sc. (I.T)
SEMESTER - V

SOFTWARE PROJECT  
MANAGEMENT 

SUBJECT CODE: USIT501



© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai

Prof. Prakash Mahanwar
Director,

IDOL, University of Mumbai

Prof. Ravindra D. Kulkarni 
Pro Vice-Chancellor,  

University of Mumbai

Programme Co-ordinator : Shri Mandar Bhanushe
  Head, Faculty of Science and Technology  
  IDOL, Univeristy of Mumbai – 400098.
Course Co-ordinator  :   Gouri S.Sawant
   Assistant Professor B.Sc.I.T, IDOL,
   University of Mumbai- 400098.
Editor  : Dr Sujatha Iyer  
  Assistant Professor,
  Satish Pradhan Dnyanasadhana College,  
  Thane
Course Writers  : Dr. Veera Talukdar 
   Principal, Shri Ram College of  

  Commerce and Science, Bhandup West.
  : Dr. M. Krishna Sudha  
   Assistant Professor, Sri Vasavi College,  

  Erode.
 : Mr Vinay Vilas Shahapurkar 
   Assistant Professor,
       Bunts Sangha’s S.M.Shetty College  

  of Science, Powai,.
 : Ms Jyotika D. Chheda 
   Assistant Professor  

  Mulund College of Commerce, S. N. Road,  
  Mulund West

 : Ms Pinky Sadashiv Rane 
   Assistant Professor  

  New Horizon College of Commerce Airoli

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

January 2022, Print - 1

DTP Composed and Printed by:
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai-400098.



CONTENTS

 Unit/Chapter No. Title Page No.

Unit 1 

 1. Introduction to Software Project Management ..................................................01

 2. Project Evaluation and Programme Management ..............................................26

 3. Introduction to Stepwise Project Planning ........................................................53

Unit 2 

 4. Selection of An Appropriate Project Approach ..................................................77

 5 Software Prototyping .........................................................................................101

 6. Software Effort Estimation  ..............................................................................131

Unit 3

 7. Activity Planning  ..............................................................................................148

 8. Risk Management  .............................................................................................177

 9. Resource Allocation ...........................................................................................197

Unit 4

 10. Architectural Design ..........................................................................................206

 11. Managing Contracts ...........................................................................................230

 12. Managing People in Software Environment    .................................................246

Unit 5 

 13. Working in Teams ..............................................................................................263

 14. Verification And Validation    ............................................................................290

 15. Project Closeout .................................................................................................318

 



  

T.Y.B.SC. (I.T)

SEMESTER -V

SOFTWARE PROJECT  
MANAGEMENT

SYLLABUS

4 

B. Sc. (Information Technology) Semester – V 
Course Name: Software Project Management Course Code: USIT501 
Periods per week (1 Period is 50 minutes) 5 
Credits 2 
 Hours Marks 
Evaluation System Theory Examination 2½  75 

Internal -- 25 
 
Unit Details Lectures 

I Introduction to Software Project Management:Introduction, Why 
is Software Project Management Important?  What is a Project? 
Software Projects versus Other Types of Project, Contract 
Management and Technical Project Management, Activities Covered 
by Software Project Management, Plans, Methods and Methodologies, 
Some Ways of Categorizing Software Projects, Project Charter, 
Stakeholders, Setting Objectives, The Business Case, Project Success 
and Failure, What is Management? Management Control, Project 
Management Life Cycle, Traditional versus Modern Project 
Management Practices. 
Project Evaluation and Programme Management: Introduction, 
Business Case, Project Portfolio Management, Evaluation of 
Individual Projects, Cost–benefit Evaluation Techniques, Risk 
Evaluation, Programme Management, Managing the Allocation of 
Resources within Programmes, Strategic Programme Management, 
Creating a Programme, Aids to Programme Management, Some 
Reservations about Programme Management, Benefits Management. 
An Overview of Project Planning:Introduction to Step Wise Project 
Planning, Step 0: Select Project, Step 1: Identify Project Scope and 
Objectives, Step 2: Identify Project Infrastructure, Step 3: Analyse 
Project Characteristics, Step 4: Identify Project Products and 
Activities, Step 5: Estimate Effort for Each Activity, Step 6: Identify 
Activity Risks, Step 7: Allocate Resources, Step 8: Review/Publicize 
Plan, Steps 9 and 10: Execute Plan/Lower Levels of Planning 

12 

II Selection of an Appropriate Project Approach:Introduction, Build 
or Buy? Choosing Methodologies and Technologies, Software 
Processes and Process Models, Choice of Process Models, Structure 
versus Speed of Delivery, The Waterfall Model, The Spiral Model, 
Software Prototyping, Other Ways of Categorizing Prototypes, 
Incremental Delivery, Atern/Dynamic Systems Development Method, 
Rapid Application Development, Agile Methods, Extreme 
Programming (XP), Scrum, Lean Software Development, Managing 
Iterative Processes, Selecting the Most Appropriate Process Model. 
Software Effort Estimation:Introduction, Where are the Estimates 
Done? Problems with Over- and Under-Estimates, The Basis for 
Software Estimating, Software Effort Estimation Techniques, Bottom-
up Estimating, The Top-down Approach and Parametric Models, 
Expert Judgement, Estimating by Analogy, Albrecht Function Point 

12 



5 

Analysis, Function Points Mark II, COSMIC Full Function Points, 
COCOMO II: A Parametric Productivity Model, Cost Estimation,  
Staffing Pattern, Effect of Schedule Compression, Capers Jones 
Estimating Rules of Thumb. 

III Activity Planning: Introduction, Objectives of Activity Planning, 
When to Plan, Project Schedules, Projects and Activities, Sequencing 
and Scheduling Activities, Network Planning Models, Formulating a 
Network Model, Adding the Time Dimension, The Forward Pass, 
Backward Pass, Identifying the Critical Path, Activity Float, 
Shortening the Project Duration, Identifying Critical Activities, 
Activity-on-Arrow Networks. 
Risk Management: Introduction, Risk, Categories of Risk, Risk 
Management Approaches, A Framework for Dealing with Risk, Risk 
Identification, Risk Assessment, Risk Planning, Risk Management, 
Evaluating Risks to the Schedule, Boehm‟s Top 10 Risks and Counter 
Measures, Applying the PERT Technique, Monte Carlo Simulation, 
Critical Chain Concepts. 
Resource Allocation: Introduction, Nature of Resources, Identifying 
Resource Requirements, Scheduling Resources, Creating Critical 
Paths, Counting the Cost, Being Specific, Publishing the Resource 
Schedule, Cost Schedules, Scheduling Sequence. 

12 

IV Monitoring and Control: Introduction, Creating the Framework, 
Collecting the Data, Review, Visualizing Progress, Cost Monitoring, 
Earned Value Analysis, Prioritizing Monitoring, Getting the Project 
Back to Target, Change Control, Software Configuration Management 
(SCM). 
Managing Contracts: Introduction, Types of Contract, Stages in 
Contract Placement, Typical Terms of a Contract, Contract 
Management, Acceptance. 
Managing People in Software Environments: Introduction, 
Understanding Behaviour, Organizational Behaviour: A Background, 
Selecting the Right Person for the Job, Instruction in the Best 
Methods, Motivation, The Oldham–Hackman Job Characteristics 
Model, Stress, Stress Management, Health and Safety, Some Ethical 
and Professional Concerns. 

12 

V Working in Teams: Introduction, becoming a Team, Decision 
Making, Organization and Team Structures, Coordination 
Dependencies, Dispersed and Virtual Teams, Communication Genres, 
Communication Plans, Leadership. 
Software Quality: Introduction, The Place of Software Quality in 
Project Planning, Importance of Software Quality, Defining Software 
Quality, Software Quality Models, ISO 9126, Product and Process 
Metrics, Product versus Process Quality Management, Quality 
Management Systems, Process Capability Models, Techniques to 
Help Enhance Software Quality, Testing, Software Reliability, 
Quality Plans. 
Project Closeout: Introduction, Reasons for Project Closure, Project 

12 

6 

Closure Process, Performing a Financial Closure, Project Closeout 
Report. 

 
Books and References: 
Sr. No. Title Author/s Publisher Edition Year 

1.  Software Project 
Management 

Bob Hughes, Mike 
Cotterell, Rajib Mall 

TMH 6th 2018 

2.  Project Management and 
Tools & Technologies – 
An overview 

Shailesh Mehta SPD 1st 2017 

3.  Software Project 
Management 

Walker Royce Pearson  2005 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Sc. (Information Technology) Semester – V 



6 

Closure Process, Performing a Financial Closure, Project Closeout 
Report. 

 
Books and References: 
Sr. No. Title Author/s Publisher Edition Year 

1.  Software Project 
Management 

Bob Hughes, Mike 
Cotterell, Rajib Mall 

TMH 6th 2018 

2.  Project Management and 
Tools & Technologies – 
An overview 

Shailesh Mehta SPD 1st 2017 

3.  Software Project 
Management 

Walker Royce Pearson  2005 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Sc. (Information Technology) Semester – V 



 

   
1 

1 
INTRODUCTION TO SOFTWARE 

PROJECT MANAGEMENT  

Unit Structure  

1.0 Objectives 

1.1    Introduction 

1.2 What is a project? 

 1.2.1 Characteristics of a project  

1.3 Why is Software Project Management important 

 1.3.1 Software Project Management 

1.4 Software Project vs Other Project 

1.5 Contract Management And Technical Project Management 

 1.5.1 Common features of contract management and technical 

project   management    

 1.5.2 Difference between Technical Project Management and 

Contract Management 

1.6 Activities Covered by Software Project Management 

 1.6.1 Project Plans, Methods and Methodologies 

1.7 Categories of Software Projects 

 1.7.1 Custom Software Projects 

 1.7.2 Distributed Computing Projects 

 1.7.3 Free Software Projects 

 1.7.4 Software Hosted on Code Plex 

1.8 Project Charter 

 1.8.1 Elements of the project charter 

 1.8.2 Benefits of project charter 

1.9 Stakeholders 

 1.9.1 Some Stakeholders in the projects 

1.10 Setting objectives 

 1.10.1 Reasons for setting objectives 

1.11 Business case 

 1.11.1 Objectives of Business case  

1.12 Project success and failure 

 1.12.1 Triple Constraints of Project Management 

1.13 What is management? Management control 

 1.13.1 Features of Management 

 1.13.2 Management Control 



   

 
2 

Software Project 
Management 

2 

1.14 Project management life cycles 

1.15 Traditional V/S Modern Project Management Practices 

 1.15.1 Traditional Project Management 

 1.15.2 Advantages of Traditional Project Management 

1.16 Modern Project Management 

 1.16.1 Advantages To Modern Project Management 

1.17   Summary 

1.18  Questions 

1.19 Reference 

1.0 OBJECTIVES  

After completing this unit, you will be able to  

• Define software Project Management and its importance.  

• Describes the characteristics of software projects. 

• Describes projects and its attributes. 

• Compares software Project with other projects.  

• Differences between project management and contract management. 

• Outlines the roles and responsibilities of Project managers.  

• Explains in detail Project Management life. 

• Categories software Project.  

• Explains in details Project Charter.  

• Distinguishes between traditional and modern projects. 

1.1 INTRODUCTION 

Project Management is the discipline of defining and achieving targets 

while optimizing the use of resources (time, money, people, materials, 

energy, space, etc) over the course of a project (a set of activities of finite 

duration). Software Project Management (SPM) is an effort made to 

develop a non- routine and unique software which will involve a specific 

timeframe and budget. It will also involve definite specifications and 

workings of an organization through proper planning. Project management 

in generally complex as it has multi- disciplinary areas included in various 

phases of its life span. Software Project Management is a comprehensive 

management which is planned, implemented, monitored, and controlled 

throughout all phases of its life to achieve the desired objectives of the 

developing organizations as well as the organizations that is procuring it. 

It is an activity which documents, imparts knowledge, takes care of the 

proper utilization of all the resources and modifies the methods applied by 

the organization for its development. It is dynamic in nature as the stages, 

activities and the deliverables keep changing as per the requirements of 

the stakeholders. 



 

 
3 

 

Introduction to Software 
Project Management 

 

 

1.2 WHAT IS A PROJECT? 

A project is a series of task that is carefully planned to achieve a particular 

outcome. Project can range from simple to complex and can be managed 

by either individual or a team. A project is defined as a planned 

undertaking of series of activities in the beginning to achieve the desired 

goals. Generally, it is undertaken to explore new and unique methods 

which will be far better than the old products or services. Its main aim is to 

accomplish the desired objectives by incorporating interrelated tasks in a 

time bound manner along with funds and proper utilization of resources.  

A general definition of Project is: “It is a temporary endeavor with set of 

well-defined activities that leads achievement of a specific goal(s)”.   

1.2.1 Characteristics of a project  

A project has the following characteristics. 

• Project has specific goal(s) 

• It has a definite start date and end date. 

• It is not group of routine task or daily task 

• Unlike routine activities, project comes to end when its goal(s) is 

achieved 

• Every project requires enough resources in terms of time, skilled 

workforce, budget, material, and other support 

When the project is incorporated with Computer both software and 

hardware, it creates a network of services and products. It helps to 

maintain a positive balance between time, attributes, and 

resources. Project requires proper planning, specific objective, timeframe, 

and a constrained resource. 

1.3 WHY IS SOFTWARE PROJECT MANAGEMENT 

IMPORTANT? 

Unlike machines or buildings, software does not have a physical form, or 

it is not a tangible product. Today organizations are using software to 

drive business processes. One can imagine the complexity involved in 

mapping business process to a software. Also, business process for one 

organization cannot be same for other, it means requirement of a software 

for one organization will be different from other. Given the rapid changes 

in the technology platform as well as globalized but integrated economies 

induce element of risks in the software already developed or under 

development. Hence to reduce the risk factor and ensure project delivery 

will meet stakeholder’s expectations, there is a need to follow structured, 

process-based approach, which is nothing but software project 

management.  



   

 
4 

Software Project 
Management 

4 

 

 

1.3.1 Software Project Management 

It is important due to the following reasons: 

i) It helps to develop a proper schedule along with definite timeline. 

ii) It helps to control the project resources and the environmental risks 

that occur during the Project development process. 

iii) It is needed to manage and control the scope of the business 

iv) It helps to develop Project with definite timeline and costing 

associated with the project. It could be increased or decreased as per 

the needs of the project. 

v) It motivates the project team to remain focused and develops team 

spirit 

vi) It can alter plans as and when needed by the client or needed in the 

project 

vii) It also helps to communicate to the stakeholders about the progress 

and state of the project and seek their opinions for further 

development 

viii) It helps the project team to be prepared for any unforeseen issues 

that might arise due to some presumptions that was made in the 

planning stage of Project 

ix) As the project team had collected inputs of the project from various 

areas hence, they are able to develop a critical path for the successful 

completion of the project 

x) In the end, the project report ensures that the knowledge and 

experiences are properly stored for future usage. 

1.4 SOFTWARE PROJECT VS OTHER PROJECT 

Most of the applications of Project Management are used in Software 

Project Management but the products of software projects have number of 

unique characteristics that make it different from others. Some of the 

features are as follows 

1)  Flexibility- The software used in the software Project Management 

helps to make necessary changes as and when needed both by the 

client and the operational team. It is one of its most effective 

strengths 

2)  invisibility- The software is not able to physically show the progress 

of the work. As a result, it is very difficult to quantify the progress 



 

 
5 

 

Introduction to Software 
Project Management 

of the work. But in other physical projects, the actual progress can 

be quantified. 

3)  complexity -Software Projects are generally more complex than 

other types of projects due to various reasons like programming used 

in it, the cost associated with it keeps varying with time due to 

upgrading of software, etc. 

4)  Conformity -Software engineers have to design software as per the 

demands of the clients but in other projects the engineers have to 

abide to the laws of the land. 

5)  Technology- In Software Project, technological exchanges are high 

as the software’s are easy to copy and can be hacked. On the other 

hand, technological exchanges in physical projects are low as they 

cannot be copied. 

1.5 CONTRACT MANAGEMENT AND TECHNICAL 

PROJECT MANAGEMENT 

Generally, Projects in various industries are of 2 types i] In House Projects 

and ii] Out House Projects. When the industries/ companies use their own 

software or develop their own personalized software within their 

organization than it is called as “In House Projects”. On the other hand, 

when the industries / companies contact software developers outside the 

organization for their personal use by making a contract between the two 

organizations, than they are called “Out House Projects”. In “Out House 

Projects” the client organization will appoint a manger for monitoring and 

reviewing the contract and is called the Project Manager. His primarily 

duty is to closely monitor the development of the project as per the 

contract, take technical decisions as and when required, to keep the project 

within the budget and lastly should try to adhere to the timeline. Again, in 

“Out House Projects” the supplier organization will also appoint a manger 

who is known as the Technical Project Manager and will specifically look 

into the technical needs of the client organizations. 

1.5.1 Common features of contract management and technical project 

management 

Some of the common features of contract management and technical 

project management are as follows: - 

a) stakeholders are involved in both. 

b) Team from both the clients and suppliers are involved for 

accomplishing the project. 

c) They generally evolve out of need and requirements from both the 

clients and suppliers. 

d) They are interdependent on each other. 



   

 
6 

Software Project 
Management 

6 

e) Standard protocols are maintained by both the clients and suppliers. 

1.5.2 Difference between Technical Project Management and 

Contract Management:- 

Some of the differences of contract management and technical project 

management are as follows: - 

S. 

No 

Contract Management Technical Project Management 

1. It is a part of the procurement 

function where it confirms 

that terms and conditions 

mentioned in the contract are 

properly adhered too. 

It is all about managing all the 

aspects of the project from 

planning till completion within 

the constraints of the main 

project 

2. They are generally 

responsible for delivering the 

said project within the budget 

and in the time 

They are generally responsible to 

check the progress of the project, 

its validity as per the need of the 

organization and timeline 

3. They solely focus on the 

contract which is a bond 

between the suppliers and the 

clients 

They generally meet the suppliers 

on a regular basis in order to 

emphasis their needs and 

demands 

4. Their primary duty is to 

conduct research, do risk 

analysis and negotiate on the 

terms of contract. 

Their primary duty is of proper 

documentations which includes 

from proper planning till 

completion along with timelines 

and budgetary areas. 

5. They are more involved in 

working closely with the 

clients to help them to 

understand the paper works 

that the clients had signed 

They are involved in meeting the 

deadlines of their projects with 

specification, budget, and 

timeframes in mind 

1.6 ACTIVITIES COVERED BY SOFTWARE PROJECT 

MANAGEMENT 

Software Project Management not only includes development process but 

are associated with several activities which are primarily required to 

develop the whole project. There are 5 stages involved in Software Project 

Management. They are as follows: - 

1]  Stage 1 – Project Initiation 

This is the 1st and the most important step in Software Project 

Management as it lays down the foundation for the development of 

the project. This step marks the beginning of the project, and it starts 



 

 
7 

 

Introduction to Software 
Project Management 

by studying the needs of the business along with resource allocation, 

time and money involved in the project. In other words, we can say 

that the Feasibility study of the projects carried out by gathering 

valuable information from different sources. In this step, the value of 

the project is also assessed keeping in mind the main purpose or goal 

of the project. The main objectives of the project should be very 

clear as it helps in finalization of the methods to be applied in the 

project in future to achieve the desired goals. These also play a very 

vital role in evaluating the success of the project towards the end. As 

the business requirements are the direct consequence to be achieved 

in the end, hence in this stage the project manager is made 

thoroughly aware of the business needs which is kept in the mind in 

all stages of the project. In this stage, the Project Charter is also 

prepared by the organization. Project Charter is an official document 

which authorizes the project manager to handle the project on behalf 

of the company. Anyone who takes part in the project both in 

present and in future will also be a part of the project initiation stage 

as they will be easily identified by the managers as stakeholders. As 

the business needs are directly related with the goals and objectives 

of the organization, hence the project manager should also properly 

understand the objectives of the business needs that lead to the 

development of the project and will ultimately meet the 

requirements of the stakeholders. 

2] Stage 2 – Project Planning 

After the feasibility study is found viable for the organization in the 

1ststage, planning is done. As the project is new to the organization 

and has been undertaken for the first time, hence careful planning is 

needed. It involves identifications of number of activities, 

milestones, and project deliverables. It should be done by keeping in 

mind the requirements of the business along with its size and 

complexities. In this stage, Detail Project Report (DPR) is prepared 

by incorporating the methodologies to be applied in different phases 

of the project along with the timelines and the finances involved in 

it. Planning is an iterative and never-ending process as it might 

require changes in budget, timeframe, requirements of the 

stakeholders, etc due to various reasons like natural calamities, 

change in government rules, etc. It is at this point that the project 

manager has to use his experience and technical knowledge in 

developing a sound and realistic project plan. He needs to focus on 

the goals of the project and narrow down on the project descriptions 

to achieve the desired results. It is here that the Project Charter 

which is an official document is prepared in accordance with the 

mission and vision of the company. This document will give the 

minute details of the project along with the deadlines and milestones 

to be achieved in the project. The Project Charter acts a guidebook 

for the project manager and clearly describes the goals to be 

achieved in each stage of the project as well as the whole project. It 

clearly states the definition of the project, its characteristics, the end 

results, and the project authorities. It is the final official document 



   

 
8 

Software Project 
Management 

8 

handed over to the project manager for the commencement of the 

project. 

3] Stage 3– Project Execution and Control 

After the completion of the planning, it is time for the execution of 

the plan to produce estimated product in time and in good quality. 

Generally, there are 2 types of methods, and they are as follows: - 

i) results in the designing and production of goods or services 

and plays a vital role in the execution of the project. It is the 

external appearance of the project which is the user interface 

of the internal architecture. 

ii) results in the formation of supporting processes to be 

implemented. The core attributes of the supporting process are 

risk management, quality assurance, team management, etc. 

and plan an equal role in project execution. It is also 

considered to be the code which is required for the 

implementation of the project. 

The execution phase is a part of all project management and is the 

most physically active and prominent phase of the project. The 

second part of this stage is Controlling, and its main objective is to 

quantify and mange the project activities in order to guarantee that 

they on the right path to achieve their desired goals. There are 5 

Variables of Project Control, and they are 1. Time 2. Cost 3. Quality 

4. Scope 5. Risk The controlling process also adheres to the scope, 

budget, schedule, and quality constraints of the project. It identifies 

any deviations if found, from the plan and proposes the corrective 

measures that can be taken to rectify the deviations. Though it is 

present in all the stages of the project, but it has more importance 

during this stage. 

4] Stage 4 – Project Closing 

The main aim of the project closure is to ensure that the project had 

reached its rational level where the project can be said to be 

completed. In project management, project management and project 

closure are a formal written assessment of a project. It documents 

all stages of project management into a feasible report. Through 

introspection, a project manager learns what worked and what 

didn’t.  It is marked by the contract made between the administrative 

department of the organization and the developers of the project. 

The project teams ensures that the objective of the project is 

achieved and is as per the requirements of the company. They also 

must make sure that the product is the project is completed per the 

terms and conditions stated in the contract. It’s also the most helpful 

learning tool for teams who hope to plan their next project based on 

past insights. Once the contract closure has been initiated than the 

full and final payment of the suppliers to the project must be settled. 

This is often followed by the administrative closure where they 

document all the project activities and experiences for future use. A 

project closure report also shows proof that the project team 



 

 
9 

 

Introduction to Software 
Project Management 

delivered what they promised they would in the beginning. A project 

closure report is the number one way to determine whether a project 

was successful. 

5] Stage 5– Project Evaluation 

The main objectives of this phase are divided into 3 parts. First part 

is the generalized where all the above four phases are being 

assessed. This is done by the project team along with the project 

manager as their leader. They try to analyze both the positive and the 

negative outcomes of the project along with the experiences gained. 

They also try to incorporate the best practices that had evolved 

during the project in their day-to-day affairs. The second part of this 

project is individual specific where the individual performances in 

various stages of the project are being appraised. Third and not the 

least, the third part review must be conducted by a neutral 

organization to evaluate the outcome of the project along with the 

performances of the project manager and his team members as an 

individual and as a team in achieving the objectives of the project 

that they were handling. They also review on various other aspects 

like the quality of the project delivered, customer satisfaction, 

ethical practices used in the project, team work etc. Towards the end 

of this stage, it determines whether the project delivered was as per 

the need of the organization and gave the value of money, time  and 

the resources that were involved in the project. 

1.6.1 Project Plans, Methods, And Methodologies 

Before the execution of the actual production, proper planning has to be 

done. It is a dynamic activity and starts from the initial stage of the project 

and continues till the product is delivered. They has constantly been 

reviewed and revised as per the latest updates. It involves making sets of 

plans that guides the project manager and his team members in managing 

resources, time, cost, risks, etc. Generally, it includes the following: - 

i. generation of the requirements 

ii. analyze the necessities 

iii. design the pilot cases 

iv. design the model 

v. develop the codes 

vi. assess the codes 

vii. compare the actual and the expected outcomes of the project 

viii. installation of the project 

ix. maintenance of the project 

This part is followed by a set of activities that has been demarcated in the 

plan. The plan translates the methods into activities to achieve the desired 

objectives of the organization. Hence the method includes the following: - 

i. starting and ending date of the project 

ii. division of responsibility in the execution of the project 



   

 
10 

Software Project 
Management 

10 

iii. list of requirements including software and the resources needed in 

the project 

Methodology is a set of methods that are to follow in a sequential manner 

to meet with success in the project.  It is generally seen that all the 

methods are interlinked with each other. As a result, the output of one 

method is the input for the next method. So, by grouping all such methods 

and techniques, we form the methodology. 

1.7 CATEGORIES OF SOFTWARE PROJECTS: - 

Software projects are categorized into 4 categories. They are as follows: - 

1.7.1 Custom Software Projects - In this, the software application is 

developed as per the specific requirements of the users or the organization.  

This software meets the specific needs of the customers and is not like the 

traditional and off the shelf software. This software is customized either 

by a third party after a contract is signed between the customer and the 

client or by the in-house research and development team of the 

organization. Custom Software are tailored as per the needs of the single 

entity and would only be used by that single entity. 

1.7.2 Distributed Computing Projects - A distributed computing system 

consists of multiple software components that are on multiple computers 

but runs as a single system. The computers that are in a distributed system 

can be physically close together and connected by a local network, or they 

can be geographically distant and connected by a Wide Area Network. A 

distributed system permits resource sharing, including software by 

systems linked to the network. Some of the examples of the distributed 

systems are Intranets, Internets, www, emails, etc. 

1.7.3 Free Software Projects – Free software is software that can be 

freely used, modified, and reallocated with only one constraint. Any 

redistributed version of the software must be distributed with the original 

terms of free use, modification, and distribution. In other words, the user 

has the liberty to copy, run, download, distribute and do anything for his 

upgradation. Thus, this software gives the liberty without money and the 

users can regulate the programs as per their needs. 

1.7.4  Software Hosted on Code Plex – Code Plex is Microsoft’s open-

source project hosting website. Code Plex is a site for managing open-

source software projects, but most of those projects are leniently licensed, 

commonly written in C# and the building blocks for own open-source 

project using advanced GUI control libraries.  The great thing about 

permissively licensed building blocks is that one doesn’t have to worry 

about the project being sucked into GPL if one decides to close the source. 

 Because Code Plex is based on Team Foundation Server, it also provides 

enterprise bug tracking and build management for open-source project, 

which is far better than the services provided by Source Forge. 

 



 

 
11 

 

Introduction to Software 
Project Management 

1.8 PROJECT CHARTER 

A project charter is a formal, characteristically brief document that 

describes the project in its wholeness — including what the objectives are, 

how it will be carried out, and who all are the stakeholders in the project. 

It is a critical component in planning the project because it is used 

throughout the project life cycle. A project charter explains the project in 

clear, concise wording for high level management. Project charters 

summarizes the entirety of projects to support teams rapidly comprehend 

the goals, tasks, timelines, and stakeholders. The document provides key 

information about a project and provides approval to start the project. 

Therefore, it serves as a formal announcement that a new approved project 

is about to commence. Contained also in the project charter is the 

appointment of the project manager, the person who is overall responsible 

for the project. The project charter is a final official document that is 

prepared in accordance with the mission and visions of the company along 

with the deadlines and the milestones to be achieved in the project. It acts 

as a road map for the project manager and clearly describes the objectives 

that has to be achieved in the project. The project charter clearly defines 

the projects, its attributes, the end results, and the project authorities who 

will be handling the project. The project charter along with the project 

plan provide strategic plans for the implementation of the projects. It is 

also the green signal for the project manger to commence the project.  

1.8.1 Elements of the project charter 

In a nutshell, the elements of the project charter which serves the 

following are: - 

i. Reasons for the project 

ii. Objectives and constraints of the project 

iii. The main stakeholders 

iv. Risks identified 

v. Benefits of the project 

vi. General overview of the budget 

1.8.2 Benefits of project charter  

Some of the benefits of project charter are as follows: - 

i. It improves the customer relationship 

ii. It improves project management methods 

iii. Expands and enhances the regional and headquarters 

communications 

iv. Supports in gaining project funding 

v. It recognizes senior management roles and authorities 

vi. Allows development, which is meant at achieving industry best 

practices 



   

 
12 

Software Project 
Management 

12 

1.9 STAKEHOLDERS 

Project stakeholder are entities with an interest in certain project. These 

stakeholders could probably be inside or outside a company which: 

sponsor a project, or don’t mind spending time or a gain upon a very good 

completion of a project and might have a positive or negative impact 

inside the project completion. Samples of project stakeholder include in 

customer, the person group, the challenge manager, the improvement 

team, the testers, etc. as a result, it very important that the project manager 

establishes a sound communication among all the stakeholders and 

achieve the project requirements for them. They might be a single person 

or an organization in totality. The stakeholders will be able to deliver 

important inputs to the projects and it will not only improve the quality of 

the project but will also help the project to meet with success. Moreover, 

all the stakeholders do not contribute positively to the project while others 

have major influences on the outcome of the projects. 

1.9. 1 Some Stakeholders in the projects are: - 

1) the client or the end user are the persons who will be using the 

project 

2) project team or the persons involved in the development of the 

project 

3) project authority / project in charge / project sponsor is the person 

who had the authority to sanctioned funds and resources and signs 

the charter on behalf of the organization. 

4) Project manager is the person who is solely responsible for the 

execution of the project 

5) Business partners like the suppliers, customers and the vendors 

6) Functional managers are the persons who are responsible in different 

departments of the organization and contribute for the development 

of the projects. 

1.10 SETTING OBJECTIVES 

Objectives are defined as some goals that is realistic and achievable and 

should not be imaginary. Project objectives are the goals that one wants to 

achieve at the end of the project. It will include deliverables and assets 

along with more intangible objectives like increase in productivity and 

motivation. Project objectives should be designed in such a way so that 

they can be attainable, and time bound along with specific goals which can 

be measurable at the end of the project. 

The objectives of the project should be clearly defined and thoroughly 

known to the project manager as he will be the main person responsible 

for the success or failure of the project. Any amount of ambiguity in 

understanding the objectives and purpose of the project would lead to 



 

 
13 

 

Introduction to Software 
Project Management 

disastrous consequences. Clarity on the goals of the project will not only 

help the organization in getting success but will also help to save time, 

money and resources. As a result, the 1st step in project management is to 

understand the motive of the organization behind developing the software 

project. Once the objectives are clear to the project manager than he can 

plan accordingly to achieve it keeping in mind the time, money and 

resources allocated to him for the completion of the project. In 

brief, project management objectives are the successful development of 

the project’s events of initiation, planning, execution, regulation and 

closure as well as the supervision of the project team’s operations towards 

accomplishing all the agreed upon goals within the set scope, time, quality 

and budget standards.  

1.10.1 Reasons for setting objectives 

Some of the reasons for setting objectives are as follows:- 

• The successful development and implementation of all project’s 

procedures. A project, regardless of its size, generally involves five 

distinctive project life cycle phases of equal importance: Initiation, 

Planning and Design, Construction and Execution, Monitoring and 

Control, Completion. The smooth and uninterrupted development 

and execution of all the above phases guarantees the success of a 

project. 

• Productive guidance, efficient communication and apt 

supervision of the project’s team. Always keep in mind that the 

success or failure of a project is extremely dependent on teamwork, 

thus, the key to success is always in project association. To this end, 

the establishment of good communication is of major importance. 

On one hand, information needs to be articulated in a clear, 

unambiguous, and complete way, so everything is comprehended 

fully by everyone and on the other hand, is the ability to be able 

listen and receive constructive feedback. 

• The achievement of the project’s main goal within the given 

limitations. The most important project limitations are, Scope in 

that the main goal of the project is completed within the 

estimated Time, while being of the expected Quality and within 

the estimated Budget. Staying within the decided limitations always 

feeds back into the measurement of a project’s performance and 

accomplishment. 

• Optimization of the allocated necessary inputs and their 

application to meeting the project’s pre-defined objectives, is a 

matter where is always space for improvement. All processes and 

procedures can be reformed and upgraded to enhance the 

sustainability of a project and to lead the team through the strategic 

change process. 

• Construction of a complete project which follows the client’s 

exclusive requirements and objectives. This might mean that you 

need to shape and reform the client’s vision or to negotiate with 

https://www.clarizen.com/work/project-management-process/
https://www.clarizen.com/work/project-management-change-management/


   

 
14 

Software Project 
Management 

14 

them as regards the project’s objectives, to modify them into 

feasible goals. Once the client’s aims are clearly defined, they 

usually impact on all decisions made by the project’s 

stakeholders. Meeting the client’s hopes and keeping them happy 

not only leads to a successful collaboration which might help to 

eliminate surprises during project execution, but also ensures the 

sustainability of your professional status in the future. 

1.11 BUSINESS CASE 

Business case states the reasons to adopt the project charter. It provides 

the justification for undertaking a project, programmed or portfolio. It is 

very similar to an investment proposal.  It evaluates the benefit, cost and 

risk of alternative options and provides a rationale for the preferred 

solution A business case is a way to prove to your client, customer, or 

stakeholder that the product you are developing is worth the 

investment. The need for a business case is that it collects the proposal, 

outline, strategy and marketing plan in one document and offers a full look 

at how the project will benefit the organization. But one can also proceed 

without business case in project planning as it is very similar to it. It is a 

document that provides the top management with all the necessary 

information needed to select the project that is to be funded. It is generally 

built on the significance of the business goals and objectives. It also 

considers the cost of the solution, breakeven point, return on investment 

and the maintenance cost.  Business case handles both the qualitative and 

quantitative issues in the project. Moreover, the developer of the business 

case must present convincing facts and figures in favor of the project. A 

decent business case should contain the following: - 

i) Detail project report along with possible impacts, costs and benefits 

ii) Include all the necessary information’s related to the project 

iii) Should be clear and logical in comparing the cost benefits impact on 

alternative project 

iv) Systematically summarizing all the findings 

1.11.1 Objectives of Business case  

The objective of the business case is to evaluate and advocate the 

utilization of information technology to improve the efficiency and 

effectiveness of the organization. Information Technology are generally 

undertaken for various reasons like improving customer satisfaction, 

reducing costs, improving communications, integrating customers, etc. 

with the underlying objectives of achieving organizational goals. There are 

number of steps involved in developing the business case and they are as 

follows: - 

i) Formation of the project team – a teamwork is required to develop 

a business case and the team includes the stakeholders, users, project 

team and IT experts. This team is formed with the intention to 



 

 
15 

 

Introduction to Software 
Project Management 

exchange knowledge, experience and the information in order to 

develop the software project. As the stakeholders, are the primary 

ones who will be affected by the project, so their views points 

should be properly represented in the business case. There are 

several advantages of having a team develop the business case and 

they are as credibility, alignment with the organizational goals and 

access to real costs. As the team comprises of people from different 

areas of the organization, hence it helps the project manager to 

overcome all the resistance that he might face in the development of 

the project. 

ii) Developing Measurable Organizational Value (MOV) – in IT 

projects, the success of the project is assessed through Measurable 

Organizational Value (MOV.  For any project to be successful, the 

MOV should align with the organization’s mission, objectives and 

goals. A transparent MOV helps the team to know the road map of 

the project along with the life cycle of the project. There are certain 

steps that are to be followed in developing MOV and they are- 

a) Identifying the desired area of impact 

b) Identifying the desired value of the project 

c) Developing an appropriate matric 

d) Setting a time frame for achieving the MOV 

e) Verifying with stakeholders 

f) Summarize the MOV in a clear and concise statement. 

iii) Identifying Alternatives – Alternative solutions to problems and 

opportunities should be properly accounted in the business case. 

These alternatives should also enable the company to reach the 

desired MOV. The business case should put out convincing reasons 

to bring about any changes and the cost that would be associated 

with the changes. 

iv) Defining Feasibility and Assess Risk – Actually feasibility is the 

probability of effectively applying an alternative while the risk 

focuses on what can go against or what is right.  The feasibility and 

the risk associated with each alternative solution should be properly 

analyzed and assessed. These will help the project manager to 

identify alternatives that are not worth pursuing. 

v) Defining Total Cost of Ownership – total cost of ownership is over 

and above the cost of purchasing or developing the application. The 

total cost of ownership of the application needs to be accounted for 

before any decision is taken on implementing it. As a result, the 

calculation of total cost of ownership is complex and the project 

manager must validate the calculation with data sources, 

expectations and methods for arriving at the cost. 

vi) Defining Total Benefits of Ownership - Total Benefits of 

Ownership comprises of direct and indirect profits that are linked 



   

 
16 

Software Project 
Management 

16 

with each alternative. Profits should be in terms of increased 

efficiency, improved productivity, improved customer service, 

improved accuracy, etc. Each alternative has certain tangible and 

intangible benefits associated with it. The tangible benefits are easy 

to identify and quantify but intangible benefits are not easily 

quantified. 

vii) Analyzing Alternatives – once the cost and the profits have been 

recognized than starts the comparisons with the alternative to zero in 

the alternative that best suits the requirements of the project. 

Different financial models are being applied to get the desired 

results. 

viii) Recommended solutions – after analyzing each alternative the most 

suited one is recommended to the customer for the approval. 

1.12 PROJECT SUCCESS AND FAILURE 

There are certain factors that make a project successful. They are timely 

delivery of the project. the project developed should be reliable, it should 

meet the expectations of the client, should be within the budget, the 

product should be high performing, it should be maintainable and enhance 

able. 

On the other hand, there are some factors that are associated with the 

failure of the project, and they are as unrealistic projects, inadequate 

planning, insufficient risk management, poor communication, poor 

understanding of the objectives, complexities of the project, market 

competition and many such reasons. 

1.12.1 Triple Constraints of Project Management 

The three major constraints of project management are :- 

I. Delivering on time 

II. Delivering within allotted budget 

III. Ensuring adherence to scope of the project   

1.13 WHAT IS MANAGEMENT? MANAGEMENT CONTROL 

Management is the coordination and administration of tasks to achieve a 

goal. Such administration activities include setting the organization’s 

strategy and coordinating the efforts of staff to accomplish these 

objectives through the application of available resources. Management can 

also refer to the seniority structure of staff members within an 

organization. Management defined as all the activities and tasks 

undertaken for archiving goals by continuous activities like; planning, 

organizing, leading and controlling. It is one of the latest areas that has 

been added to modern day business. As time and requirements are 

constantly changing very fast, so the role of the managers is also changing. 

Due to the development of management science, the modern-day 



 

 
17 

 

Introduction to Software 
Project Management 

managers are more equipped to meet the challenges of dynamic business 

environment. In other words, management is an art of getting people 

together to achieve the desired goals of the business organization. 

Management is important in all works of our life. Management is a 

process of planning, decision making, organizing, leading, motivation 

and controlling the human resources, financial, physical, and 

information resources of an organization to reach its goals efficiently 

and effectively. 

1.13.1 Features of Management:– 

Management is the process of setting and reaching goals effectively and 

efficiently. Management process has some qualities or features. 

1. Management is Associated with Group Efforts 

2. Management is Purposeful 

3. Management is Accomplished Through the Efforts of Others 

4. Management is Goal-oriented 

5. Management is Indispensable 

6. Management is Intangible 

7. Management can Ensure Better Life 

1.13.2 Management Control:-  

 is a function of management which supports to check errors to take 

remedial actions. This is done to curtail deviation from values and 

safeguard that the definite goals of the organization are attained in a 

chosen manner. According to modern notions, control is a foreseeing 

action. Earlier concepts of control were only used when errors were 

detected. Control in management includes setting standards, measuring 

actual performance, and taking corrective action in decision making. 

Control procedures provide managers with the type and amount of 

information they need to quantify and display the performance. The 

information from various controls must be as per the needs of the 

management, departments, or units of operations. 

1.14 PROJECT MANAGEMENT LIFE CYCLES 

A project management life cycle is a framework encompassing of a set of 

different high-level stages essential to transform an idea of concept into 

reality in an orderly and efficient manner. Projects are temporary activities 

of the organization and have definite aims.  They do not form the core 

activity of the organization. Project life cycles is also used in all works of 

life. Like in aerospace, government offices, hospitals, hotel, etc. The 

Project Lifecycles defines the different rational stages in the life of a 

project, and it starts from the incorporation of the project till the end. The 

project life cycle structure commonly displays the following 

characteristics: 



   

 
18 

Software Project 
Management 

18 

i. In the beginning, cost and staffing stages are low and reach a 

ultimate level when the efforts are in progress. It again starts to drop 

speedily as the project begins to halt. 

ii. The typical cost and staffing curve does not spread over to all 

projects. Substantial expenditures protect the essential resources 

early in its life cycle. 

iii. Risk and uncertainty are at their heights at the start of the project. 

These features drop down as the life cycle of the project progresses, 

decisions are reached, and deliverables are acknowledged. 

iv. The capability to touch the final product of the project without 

affecting the cost considerably is at its upper most level at the start 

of the project and decreases as the project progresses towards 

conclusion. It is indistinct that the cost of constituting new changes 

and mending errors upsurges the cost of the project as one 

approaches towards completion. 

The project is fragmented into different stages in order to ensure that the 

project can run smooth and efficiently. By breaking down the projects into 

various stages, the activities get arranged in a sequential manner and the 

risk factor also gets reduced. The stages are arranged in such a manner that 

each stage of the project provides one or more deliverables which are 

tangible in nature and can be verified. The deliverables at the end of each 

stage helps the project manager to evaluate the outcome of that stage and 

take necessary actions as and when required. Though it is said that the 

stages of project life cycle are linear in sequence but sometimes they 

overlap to save time, but it is risky to undertake such activities. There are 

6 Phases of Project Management Life Cycle, and they are 

1. Project Initiation 

Project initiation is the first stage in Project Management life cycle, where 

the project starts rolling. It offers a summary of the project, along with the 

tactics which are essential to achieve the desired results. In this stage, the 

feasibility and business value of the project are determined. 

The project manager starts with a meeting in order to understand the client 

and stakeholders’ requirements, goals, and objectives. It is important to 

study minute specifications and requirements in order to have a better 

understanding of the project. once a decision is made to proceed, the 

project can move on to the next step which is creation of a project team. 

The Project Charter is measured to be the most significant document of 

any project. 

i. Undertake a Feasibility Study - In the initial stage, it is vital to 

recognize the feasibility of the project. It is also important to 

understand the viability from the economic, legal, operational, and 

technical aspects. 



 

 
19 

 

Introduction to Software 
Project Management 

ii. Identify the Project Scope – here the project scope is identified, 

and it comprises of defining the length, breadth, and depth of the 

project. On the other hand, it’s equally important to plan functions, 

deadlines, tasks, features, and services. 

iii. Identify the Project Deliverable–after identifying the project scope, 

the next phase is to plan the project deliverables. They include 

defining the product or services required. 

iv. Identification of Project Stakeholders - identification of project 

stakeholders is important. Meetings among team members and 

experts helps to identify project stakeholders. Documentation of 

related information on stakeholders is important for successful 

completion of the project. 

v. Develop a Business Case - Before developing a business case, one 

should check whether the vital pillars of the project such as 

feasibility, scope, and identification of stakeholders are in place. The 

next phase is to come up with a complete business case. After the 

formation of a statement of work (SoW) and the formation of a 

team, the project initiation phase comes to an end. 

2. Project Planning – 

A lot of planning is associated with the project in this phase. On 

identifying the project objectives, it is time to develop a project plan 

which could be followed by all. The planning phase decides a set of plans 

which will guide the team in implementing the phase and thereafter 

closing it. The program assembled here will surely help you to manage 

cost, quality, risk, changes, and time. The project plan established should 

comprise all the important facts associated with the project goals and 

objectives. It is the most composite phase in which project managers take 

care of operational requirements, design limitations, and functional 

requirements. 

The project planning stage comprises the following mechanisms: 

i. Generating a Project Plan - A project plan is a design of the whole 

project. An elegant project plan controls the activities, the time 

frame, dependencies, restrictions involved, and probable risks. It 

helps the project manager to rationalize the operations. 

ii. Generating a Resource Plan - The resource plan delivers 

information about numerous resource stages essential to achieve a 

project. Resources used should have applicable Project Management 

expertise. 

iii. Budget Estimation - financial plan benefits one to make the budget 

and bring project deliverables without surpassing it. The final budget 

plan states the expenses on material, labour, and equipment. Making 

a budget plan will aid the team and the project managers to monitor 

and control the finances throughout the Project life cycle. 



   

 
20 

Software Project 
Management 

20 

iv. Collecting Resources - collecting resources is an important part of 

project planning and assists to monitor the quality stage of the 

project. Resources like equipment, money, software solutions, and 

the workplace should be given to complete the work. 

v. Forestalling Risks and Potential Quality Barriers - The risk plan 

will assist in identifying risks and lessen them. It comprises all the 

probable risks, the level of severity, and preventive actions to curb 

it. 

3.  Project Execution 

Project execution is the stage where the execution processes are applied, 

works and resources are allocated. The technique includes constructing 

deliverables and satisfying customer needs. Project managers or team 

leaders achieve the job through resource sharing and by keeping the team 

members focused. The team starts generating project deliverables and 

pursue to attain project goals and objectives. The final deliverable of the 

project takes form during the project execution phase. 

i. Writing Growth of a Project - During the project execution phase, 

it is important to get steady project information as it delivers the 

essential information and even recognizes the problems. 

ii. Conduct Regular Meetings - Before starting a project meeting, the 

agenda should be clear to all the team members. Proper 

communication should be done on time. 

iii. Accomplish Problems - Problems inside the project are certain to 

occur. Problems like  time management, quality management, 

weakening in team spirit can hamper the success of a project. So, 

make sure all problematics issues are solved in the beginning itself. 

4. Project Monitoring and Control 

The Project Monitoring and Control is all about measuring the 

performance of the project and chasing the development. It is applied 

during the execution phase and the main goal of this phase is to align with 

the plan especially related to financial constraints and timelines. It is the 

accountability of the project manager to make essential modifications 

connected to resource allocation and guarantee that all the things are on 

track. Monitoring project after the project execution phase will allow the 

project manager to take remedial measures. 

5. Project Closure 

The final phase of the Project Management life cycle phases is similarly 

significant as all other phases. This phase signifies the final phase of the 

Project Management life cycle, which is also recognized as the “follow-

up” phase. During this time, the ultimate product is completely ready for 

delivery. Here the project manager and his team focus on product release 

and product delivery. During this phase, all the happenings associated with 

the project are wrapped up. The closure phase is not necessarily after a 

successful completion phase alone but also after the project meets with 

failures. After the project is completed, it is timely delivery to clients and 



 

 
21 

 

Introduction to Software 
Project Management 

it highlights the strengths, identifies the ambiguities and recommends how 

they could be corrected for future projects. 

6. Project Evaluation 

It is not possible to immediately evaluate the real value of the software 

project after its completion as the goals might be long time. By simply 

appraising the success accomplished in implementing the hardware and 

the software peripherals of the projects does not amount to having 

succeeded in the project. The documents produced in the project 

evaluation stage are very useful for use in the future projects that the 

organizations might undertake later on. Evaluation of the project team 

along with the project manager is also carried out in this stage. 

1.15 TRADITIONAL V/S MODERN PROJECT MANAGEMENT 

PRACTICES 

The pace of technology change in IT projects makes it difficult for Project 

Managers to ensure that the project they are implementing is relevant by 

the time they are done. Most of the methods and methodologies such as 

“waterfall” assume that every requirement of the project can be identified 

before any designing or coding occurs. 

On the other side, would it not be more pragmatic that the stakeholders 

describe their vision to the development team and the team development 

functional software. To overcomes these limitations of rational 

methodologies the agile methodology was introduced. The agile 

methodology helps the team respond to unpredictability through 

incremental, iterative work known as sprints. 

1.15.1 Traditional Project Management: - 

With the fast development in Information Technology, it becomes very 

difficult for the project managers to keep pace with the changes. In 

traditional Software practices like the  "Waterfall" method, it wants one 

job to be completed before the start of the  next one. Detail Plans are made 

before the beginning of the project date. Moreover, the successive stages 

are also plotted out initial to deliver clarity on the work that should be 

accomplished to reach the desired goal. Many businesses organizations 

still use it for projects having a fixed budget or deadline. 

1.15.2 Advantages of Traditional Project Management are: - 

1. No surprises - This approach allows hardly any space for flexibility 

or changes once the project starts rolling. In the beginning itself, the 

plan is placed before the management and decided by them in the 

subsequent meeting. This leaves very little space for readjustment 

and the unintended scope creep is decreased. As both the parties 

approve on the project timeline and jobs, it offers clarity on the 

development and assigns responsibilities to everyone in the initial 

stages only so that they are aware of their duties. 



   

 
22 

Software Project 
Management 

22 

2. Smooth knowledge transfer – Elaborate documentation is the most 

important part of the waterfall methodology. When the information 

is always easily available, it becomes  easier for new team members 

to adopt quickly. Moreover, the information will not be lost when an 

employee switches over to another company. 

3. Sets potentials both internally and externally – much of time is 

consumed in placing together a complete project timeline for the 

client to assess. A main advantage is that the client is aware in the 

initial stage on what to expect and can plan consequently. Moreover, 

very slight participation is needed after the initial phase, and they 

have sufficient time to gather the assets they need for a specific 

phase. Internally, team members can design their time in a better 

manner which comes in handy when occupied on multiple projects 

simultaneously. 

1.16 MODERN PROJECT MANAGEMENT 

Modern project management leverages automated tools to help plan, 

execute, and organize work. It's also viewed as the more flexible method 

of the two. More professional service businesses are taking on short-term 

or even one-time projects, so businesses are looking for alternative to the 

traditional project management method. This is where the modern project 

management method flourishes - in a fast-paced environment that can 

handle mid-project changes swiftly and efficiently. 

1.16.1 Advantages to Modern Project Management are: 

1. Juggle more projects at once - 

Instead of having all of your tasks fully outlined at the start of each 

project (as they are in true, With the use of smart technology, one 

can create a added flexible technique that will permit one to start the 

project without having a broad idea of the end result. By doing so, 

one can readily make modification to the project as per the desires 

and needs of a client change without returning to the start time. 

2. Minimize risk and human error 

As a smart platform offers enlarged visibility of the project team and 

the project itself, so each step of the project can be monitored, and 

remedial steps may be added as and when required and report it 

much before any actual damage is done to the client relationships. 

Use of accurate smart platform will inevitably save the client data, 

calculate the accounts, and update the timeline to the client 

automatically. This will reduce the manual work, will save time and 

will make less mistakes. 

3.  Be more flexible with time 

In traditional approach to project management, a fixed amount of 

time is allocated to complete the job. But while engaging smart 

automated software that logs time and tracks utilization, this will not 

be a problem. It is so as we will be able to track our project in real-



 

 
23 

 

Introduction to Software 
Project Management 

time bases and reassign jobs as and when needed. One can work 

remotely on the projects with a correct cloud-based platform which 

will allow one to share files with team members and communicate 

with clients from one interactive dashboard and integrated the 

system- so that one does not have to extend a deadline as cannot go 

to office. 

Selecting the correct project management style is vital to the 

business. Understanding the advantages and disadvantages of 

traditional and modern project management is crucial before 

selecting which is good for you and your team. 

1.17 SUMMARY 

In this chapter we have seen that software in project management is 

dedicated to the planning, scheduling, resource allocation, execution, 

tracking and delivery of software and web projects.  Some characteristics 

of successful software projects are a clear and realistic goal, powerful 

team leadership, sense of ownership, commitment to quality, getting 

things done, etc. A project can be defined as a temporary effort to 

accomplish a unique product, services or results. Some key attributes of a 

project is it should have a start and finish point, a project should have a 

fixed budget which is capitalized, a project seeks to make instant changes 

or benefits and many more.  A software project is more complex than any 

other engineered artifacts. The complexity of a software project cannot be 

measured until we work on it.  The role of a software project manager is to 

work with cross-functional teams to closely manage new initiatives from 

start to end, while on the other hand the contract managers are responsible 

for keeping track of every deadline, deliverable, and other obligations laid 

out in a company’s contracts.  Some of the responsibilities of a project 

manager are organizing and motivation a project team, controlling time 

management, ensuring customer satisfaction, monitoring progress and 

many more.  A project charter is a formal, typically short document that 

describes the project in its entirety, including the objectives, method of 

execution and the details of the shareholders.  Traditional projects took 

place within a clearly defined structure, using channels such as internal 

mail, telephones, memos and formal meetings.  Modern projects utilize 

technology such as email, internet, and social media to share information 

with a more flexible team. 

1.18 QUESTIONS 

1) What is Software Project Management?  

2) Why is Software Project Management important? 

3) What is project? State it’s features. 

4) State the difference between Software project and other projects. 

5) State the difference between Contract Management and Technical 

Project management. 

6) Describe the activities covered by Software Project Management. 



   

 
24 

Software Project 
Management 

24 

7) What are the ways of categorizing Software Project? 

8) What is Project Charter? Explain briefly 

9) What is business case? Describe in detail 

10) What are the reasons behind the success and failure of a project?  

11) What is Management and Management control? 

12) Describe the project management life cycle.  

1.19 REFERENCE 

• Software Project Management Edited By Mandeep Kaur 

• Software Project Management (SIE) | 6th Edition  2017 by Bob 

Hughes (Author), Mike Cotterell (Author), Rajib Mall (Author) 

• Introduction to Software Project Management By Adolfo Villafiorita 

• Project Management Absolute Beginner's Guide by Greg Horine 

•  Project Management for Non-Project Managers By Jack Ferraro 

 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Bob+Hughes&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Bob+Hughes&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Mike+Cotterell&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Rajib+Mall&search-alias=stripbooks
https://www.routledge.com/search?author=Adolfo%20Villafiorita
https://books.google.co.in/books
https://www.amazon.in/Project-Management-Non-Project-Managers-Ferraro/dp/0814417361


   
25 

            2 
PROJECT EVALUATION AND  

PROGRAM MANAGEMENT 

Unit Structure 

2.0 Objectives 

2.1 Introduction 

2.2 Business Case 

2.3 Project Portfolio Management 

2.4 Evaluation of Individual Projects 

2.5 Cost Benefit Evaluation Techniques: - 

2.5.1 Introduction 

2.5.2 The costs include 

2.5.3 The benefits include 

2.6 Cash flow Forecasting 

2.7 Techniques of Cost benefit evaluation 

2.7.1 Net Profit 

2.7.2 Pay-out or the payback period 

2.7.3 Return on investment (ROI) 

2.7.4 Net present Value 

2.7.5 Internal Rate of Return 

2.8 Risk Evaluation 

2.8.1 Introduction  

2.9 Basic Concepts In Risk Management 

2.9.1 What is software risk 

2.9.2 Risk Evaluation 

2.10 Risk Identification 

2.11 Risk components and drivers 

2.11.1 Several Tools in for Mangers in Risk Management  

2.12 Risk assessment 

2.13 Decision trees 

2.14 Program management 

2.15 Program management framework 

2.16 Stages in program management 

2.17 Managing the Allocation of Resources within Program 

2.18 Strategic program management 



    

 
26 

Software Project  

Management 

 

26 

2.19 Creating a program 

2.19.1Program mandate 

2.19.2 The vision statements 

2.19.3 The design / blueprint 

2.20 Some reservations about program management 

2.21 Aid to Program Management 

2.21.1Dependency Diagrams 

2.21.2 Delivery Planning 

2.22 Benefits Management 

2.23 Summary 

2.24  Questions 

2.25  Reference 

 

2.0 OBJECTIVES 

• Define business case and its uses in project management 

• Define project portfolio management and evaluation of individual 

projects  

• Describe cost benefits and the different techniques to evaluate it 

• Define risk and understand the basic concepts of risk management 

• Explain Program management and the stages in it 

• Define strategic management and the factors involved in it 

• creating Program and its aids 

• Advantages and disadvantages of Program management 

2.1 INTRODUCTION 

As we all know that every organization has various ongoing projects at 

various levels of progress, each project must be equally profitable to get 

the Managements approval. The selection standards differ from company 

to company. The company must balance the total risk of the project with 

each project so that the project must not become extremely risky. Even 

after approval the project may have various levels of risk, technical 

complexities, and strategic intent. There are two major types of 

companies, both have their own advantages and disadvantages, the 

companies which only take low risk projects have sure profits, but on 

contrary to that the company fails to ride the technical wave, and their 

employees may feel that their talent is unutilized, they are having a slow 

growth due to absence of opportunities and challenges. Then comes the 

second type of company which only take up risky projects may fall in a 

dangerous position in case of implementation of its assignments or it the 

project fails to deliver.  So, its required to take up a balanced project, 

neither too risky nor too easy.  Even though some companies want to take 



 

 
27 

 

Project evaluation and 
Programme Management 

up perfectly balanced projects it faces difficulties of insufficient resources, 

scarcity of funds to finance the project, so the companies should carefully 

scrutinize each project and then take it up. The scrutiny process will 

determine which project will get how much funding and at what time.  

Even though the scrutiny process varies from company to company but 

here we can discuss the common process which is adopted by majority 

companies.  Firstly, in the process of scrutiny there is a Decision-Making 

committee which receives only those projects which have successfully 

complies with the companies’ organizational standards.  Secondly the 

decision-making committee differentiates the project with other projects 

ongoing projects of the company on the parameters of risk, cost, 

difficulties, and time with the projects implemented, on the verge of 

completion, and underway with the company.  Based on the differentiative 

analysis of the committee the project is either rejected or assigned to the 

project managers for further execution. 

2.2 BUSINESS CASE 

Business case is also known as a feasibility study or a project justification. 

It includes: 

1) Introduction and Background to the proposal – This is a description 

of the current environment of the proposed project. 

2) The proposed project - An overview of the proposed provided  

3) The market - This would contain information like the estimated 

demand for the product or service. 

4) Organizational and operative infrastructure - This describes how the 

implementation of the project affects the structure of the 

organization. 

5) Benefits – Wherever possible a financial value should be put on the 

benefits of the implemented projects. 

6) Outline implemented projects - Activities such as marketing, 

promotion, operational and maintenance infrastructures needed to be 

considered. 

7) Costs – A schedule of expected costs associated with the planned 

approach can be presented after the outline implementation plan is 

done. 

8)  The financial case – A financial case includes information related to 

costs and income 

9) Risks – Here project risk has to be distinguished relating to threats to 

successful project execution and benefits of delivered project. 

10) The Management plan - This includes a detailed planning of the 

management required in all the above steps. 

 

 



    

 
28 

Software Project  

Management 

 

28 

2.3 Project Portfolio Management: -  

Project Portfolio Management provides an overview of all the projects that 

an organization is undertaking or is considering. It is the assemblage of all 

the different projects, Programs and all the other functionaries of the 

company which lead to the overall growth of the company. Portfolio 

management gives a sketch of the different projects the company is 

considering and based on precedence the fund allocation is done by the 

company. It also helps to provide effective governance to meet the 

strategic business objectives. Companies do portfolio managements with 

the aim of including projects which maximize the portfolio value and 

exclude the projects which are a potential threat to the company’s 

portfolio valuation. Some major applications of portfolio management are 

risk examination, reduce or completely stop wastage of resources, keep 

track of ongoing projects, do proper fund allocation. Some major aspects 

of project portfolio management are  

A) Project portfolio definition – The company must have the details 

of the projects of the company and a resolution must be taken about 

which types of projects are to be included whether it should include 

only renewal projects or only new projects.  

B) Project Portfolio Management – After the creation of the portfolio 

the progress of the project can be tracked, and the detailed costings 

can also be recorded. 

C) Project Portfolio Optimization – Some projects may have huge 

profits while some projects may have modest profits, there are 

extremely knowledgeable managers which have the knowledge of 

tracking the performance on a regular basis and a better balance is 

achieved. 

2.4 EVALUATION OF INDIVIDUAL PROJECTS 

The project evaluation can have different types of benefits, it helps to 

identify the different types of problems that can be encountered while 

undergoing any project, the non-hardware projects have various problems 

which are different from the hardware projects like falling behind the time 

schedule, exceeding the allocated budget, increase in the size of project 

and difficulties.  Some of the reasons for the occurrence of these problems 

is less upfront work, inadequate user end communication and less training. 

Feasibility of a project can be evaluated by  

• Technical assessment 

• Cosy –benefit analysis 

• Cash flow forecasting 

 A matter of concern is how to associate the risks associated with the 

software projects can be lowered, the risks of budget excess and lagging 

schedule can be lowered by taking a proper scrutiny of the project before 

starting the project.  Another solution for lowering the risk of budget 



 

 
29 

 

Project evaluation and 
Programme Management 

exceeding and missing the time schedule is to begin with a realistic and an 

achievable target rather than something unrealistic and wait till the targets 

are missed.  The success of the software project is also affected by the 

perfect comprehensive report of the existing software and hardware 

infrastructure. As many a times the existing infrastructure may be a 

limitation to the success of a project.  The objective of project evaluation 

is to whether the product fulfils the ideas presented at the commencement 

of the project, and it also helps in assessing the quality of the product.   

2.5 COST BENEFIT EVALUATION TECHNIQUES 

Cost Benefit Evaluation Techniques reflects the timing of the costs and 
benefits relative to the size of the investment. 

2.5.1 Introduction: - 

The most widely used method to accomplish an economic assessment of a 
fresh project is differentiating the expected costs of development and the 
profits after the system operation.  Basically, it compares the anticipated 
costs and the anticipated benefits.  Though it may look like a very easy 
process, but it is technically difficult.  When the company has multiple 
projects to be evaluated and then selected for further execution then it 
becomes important to find the best or rather the most profitable amongst 
them.  In some cases, based on the feasibility it may become imperative 
that more than one projects are approved, at such a time it becomes 
necessary to classify the projects based on their importance so that the 
issue of shortage of resources does not become an issue in the successful 
execution of the project. Cost Benefit Evaluation helps in assessing the 
economic financial advantage of the project.  We will try to recognize 
some of the costs and the benefits of carrying out the project 

2.5.2 The costs include: -  

1) Development Costs – The salary paid to the people working on the 
project and that to the consultant if any 

2) Setup costs – This includes the cost of putting the system in place 
and consists of hardware ancillary equipment as well as cost of 
training and recruiting staff. 

3) Operational costs – The operational costs are assumed to be a 
percentage of the development and setup cost, operational costs 
include support costs, hosting costs, licensing costs, maintenance 
costs and back costs. 

2.5.3 The benefits include: -  

1) Direct Benefits – These benefits arise from various cost cutting 
techniques like, reduction of staff, faster turnaround, optimum 
utilization of resources, and newer fresh markets.  These benefits are 
understood after the opening of the system. 



    

 
30 

Software Project  

Management 

 

30 

2) Indirect Benefits – These are the subordinate benefits of the project 
include greater accuracy, on account of user-friendly design 
resulting reducing errors, improved work output and improved 
flexibility. 

3) Intangible benefits – These benefits are difficult to measure even 
after the system is operational but are evident to the user.  The 
benefits are the positive effects of the new system, and include entry 
to the new markets, increased goodwill, enhanced interest in job 
reduced staff turnover and thereby, lower recruitment costs.  These 
benefits are a part of the strategic decision making:  

Communicating the costs and benefits in common ratio: To arrive at a 

accurate picture the costs and benefits must be spoken in monetary 

relationships and new benefits must be estimated where the difference 

between the total benefits and total costs are expressed in monetary form 

for better understanding of the project.  The business establishment should 

consider any project that shows an additional benefit should not be 

sufficient especially when the company has numerous projects to choose 

from and the resources in hand are limited.  There may be better projects 

to allocate the limited resources. 

2.6 CASH FLOW FORECASTING 

The procedure of choosing the more desirable projects amongst many 

profitable investments is made possible by the analysis of cash flows. The 

idea behind the use of cash flows is to maximize the benefit from using 

scares resources. In most cases the scarce resources are funds available for 

capital investments and the benefits are returns on investment. The 

objective is to select is a project or a combination of projects which would 

give maximization of the total NPV (Net Present Value). Expenses on the 

project at the development stage and include staff wages, hardware 

purchase, etc. This expense cannot be deferred until income from the 

project is generated and hence it is important to know in advance where 

the funds for the project are going to come from. 

In the preliminary stages of the project there are all outgoing payment and 

the incoming payment that start producing once the project has been 

implemented along with any additional cost that is going to be incurred at 

the end of the project life. It is also important for the manager to 

distinguish where funding of the project is going to come from. The 

development expenditure could either be company’s own resources or by 

borrowing from the bank. From the management perceptive it is essential 

to have some forecast of when expenditure such as the payment of salaries 

will take place and when income will be generated. The manager should 

consider the timing of incoming and outgoing cash flow and determine 

whether it is in line with accurate financial plan. Accurate cash flow 

forecasting is not easy as it is done in the early stages of the project and 

such as it’s difficult to determine the expenses and income of some years 

in future when estimating future cash flows effects if inflation should be 

ignored. 



 

 
31 

 

Project evaluation and 
Programme Management 

2.7 TECHNIQUES OF COST BENEFIT EVALUATION 

Here are some of the methods for comparing the projects on the basis of 

the cash flow forecasting 

2.7.1. Net Profit 

Net profit is the difference between the total cost and total income of the 

entire life of the project. It is simple technique of calculating the total 

benefits of the project how will this method different if the profit relative 

to the size of the investment. In the table below project Y is generating 

more benefit from Project X and Project Z but original expenditure in 

project b is higher than both the projects. 

Year Project X Project Y Project Z 

0 (year the project is 

implemented) 
-8,00,000 -7,00,000 -6,00,000 

1 3,00,000 2,00,000 1,50,000 

2 3,00,000 3,00,000 2,50,000 

3 3,00,000 3,25,000 2,50,000 

 Net Profit 1,00,000 1,25,000 50,000 

Also new profit techniques do not take into account the timing of payment 

in our example above comparing projects A and B having to wait for 

returns as the disadvantage that investment must be funded for a longer 

period. Moreover, payment estimates in the distant future and less reliable 

than those in the immediate future. 

2.7.2  Pay-out or the payback period  

It is the time taken to pay back the initial investment.  As a result, the 

organizations choose the project which has the shortest payback duration. 

This procedure is to determine how long it takes to be a project return the 

cost of the original investment. 

Advantages of pay out/payback period 

(i) This is a simple method is quite simple and easy to understand it has 

the advantage of making it clear that there is no profit of project 

unless the payback is over. When funds are limited, it is always 

better to risk selecting project having shorter payback period this 

method is suitable to industries weather risk of obsolescence are 

very high. 

(ii) the payback period can be compared to a breakeven point the point 

at which the Costs are full recovery covered but profits are yet to 

commence. 



    

 
32 

Software Project  

Management 

 

32 

(iii) The risk associated with the project arises due to uncertainty 

associated the cash inflows. A shorter payback period means less 

uncertainty towards risk. 

Disadvantages of Pay-out/payback period 

(i) This method does not add color consideration to the time value of 

money Cash inflows occurring at every point of time are simply 

added  

(ii) This method becomes a very inadequate measure of evaluating two 

projects where cash inflows are inadequate. 

(iii) It stresses capital recovery than profitability.  It does not consider 

the returns from a project after its pay-out period. Therefore, it may 

not be a good method to evaluate where the comparison is between 

two projects one involving a long gestation period and other yielding 

a quick result only for a shorter period. 

2.7.3 Return on investment (ROI) 

• The accounting rate of return or the Return-on-investment method of 

evaluating is so named because it parallels traditional accounting 

concepts of income and investment. 

• A project is evaluated by computing a rate of return on the 

investment, using accounting measures of net income. The formula 

for the accounting rate of return is  

ARR= (Annual revenue from project – Annual expenditure of project) 

*100  

         Project Investment 

• This rate is compared with the rate expected on other projects had 

the same funds been invested alternatively on those projects.  

Sometimes the management compares this rate with the minimum 

rate (called cut of rate). 

Advantages of return of investment 

This method is quite simple and popular because it helps to understand 

and incudes income from project throughout its lifetime 

Disadvantages of Return on investment 

• This method ignores the timing of cash flows, the duration of cash 

flows and the time value of money. 

• It is based upon a crude average of profits in the future years.  It 

overlooks the consequence of variations in profits from year to year. 

Conclusion 

These traditional techniques of appraising capital investments decision 

have two major drawbacks  



 

 
33 

 

Project evaluation and 
Programme Management 

(i) They do not consider total benefits throughout the life of the project 

and  

(ii) The timing of cash inflows is not considered.   

 Therefore, the two main components of a hypothetically sound appraisal 

method are that : 

(i) It should be based on total cash stream through the project life  

(ii) It should consider the time value of money of cash flows in each 

period of project life. 

2.7.4 Net Present Value 

Under this method all cash inflows and outflows are discounted at a 

minimum acceptable rate of return, usually the firms cost of capital. If the 

present value of the cash inflows is greater than the present value of cash 

outflows the project is acceptable. i.e NPV>0 accept and NPV<0, reject. 

In other words, a positive NPV means the project earns a rate of return 

higher than the cost of capital  

Net present value = Net investment – total discounted cash inflows 

If Net present value > 0 Project is feasible and vice versa. 

Merits of NPV 

1) It distinguishes the value of money against time 

2) The whole stream of cash flows throughout the project life is 

calculated. 

3) A fluctuating concession rate can be constructed into the NPV 

calculations by changing the denominator. 

4) NPV can be seen as the addition to the wealth of the shareholders.  

The criteria of NPV is thus in conformity with the basic fundamental 

objectives. 

5) This technique is beneficial for choice of reciprocally exclusive 

projects. 

6) An NPV practices the promotional cash flows i.e., special delivery 

cash flows in relationships to present rupees.  The NPV's of 

different projects can therefore be added/compared.  This is termed 

as the value additive principle indicating the NPV of distinct 

projects which can be supplemented.  It suggests that individual 

project can be assessed independently of others on its own. 

Demerits of NPV  

1) It is problematic to estimate as well as comprehend and use in 

evaluation with the payback method or even the ARR method. 



    

 
34 

Software Project  

Management 

 

34 

2) The calculation of concession rate grants grave difficulties.  In fact, 

there is difference of opinion even regarding the exact method to 

calculating it. 

3) PV method is an absolute measure.  Prima facie among the two 

projects, the project with a Higher Present Value (or NPV) is 

favored. But it is likely that this project may also value method may 

not give dependable results. 

4) This method may not give satisfactory results in case projects having 

different effective lives. 

2.7.5 Internal Rate of Return 

Internal rate of return is the interest rate that discounts an investment's 

future cash flows to the present so that the present value of cash inflows 

exactly equals to the current worth of the cash outflow i.e., at that interest 

rate when the net present value will be equal to zero. The discount rate i.e., 

cost of capital is considered is the determination of the net present value 

while in the internal rate of return calculation the net present value is set 

equal to zero and the concession rate which pleases the factors are 

determined and is called internal rate of return. Any venture that produces 

a rate of return larger than the cost of capital should be acknowledged 

because the project will rise the value of the organization. Unlike the NPV 

method, calculating the IRR is more difficult.  The technique used will 

depend on whether the cash flows are annuity (equal year wise) or non-

uniform. 

The following steps are taken to determine the IRR for an annuity (Equal 

cash flows) 

1. Determine the payback period of the proposed pushback. 

2. In the table of Present Value of Annuity search for year which is 

equal to or nearer to the life of the project. 

3. In the year column, try to look for two present value or concession 

factor closest to payback period and amongst them one should be 

larger and other smaller than it. 

4. In the top row of the table note, the two interest rates equivalent to 

the Present Values as stated above in (3). 

5. Determine IRR by interpretation. 

When cash flow is not uniform an interest rate cannot be found using 

annuity tables. As an alternative, trial and error approaches of a computer 

can be used to calculate the IRR. If the IRR is calculated physically, the 

primary step is to choose an interest rate that seems rational, and it can be 

done by calculating the average annual cash flows by the annuity methods. 

They then calculate the present value of the individual cash flows using 

that rate. When the net present value is positive then the interest rate used 

is low, i.e., IRR is higher than the interest rate carefully chosen.  A higher 



 

 
35 

 

Project evaluation and 
Programme Management 

interest rate is then chosen, and the present value of the cash flow is 

computed again. Moreover, when the new interest rates produce a negative 

Net present value then a lesser interest rate is to be carefully chosen. The 

process is repeated until the present value is equal to the present value of 

the cash outflows.  Finding the rate of return using trial and error methods 

can be tradition but a computer can accomplish the task quiet. 

Advantages of internal rate of Return 

1. It possesses the advantages which are offered by the NPV criterion 

such as it considers the value of money, it considers the total cash 

inflows and outflows. 

2. IRR is easier to understand.  Business administrators and non-

technical persons comprehend the perception of IRR much more 

voluntarily than they comprehend the concepts of NPV. 

3. It does it not use the concept of required cost of return (or the cost of 

capital) but offers a rate of return which is suggestive of the success 

of the proposal.  The calculation of the cost of capital is down later 

in the project  

4. It is consistent with the overall objective of maximizing shareholders 

wealth since the acceptance or the otherwise of a project based on 

comparison of the irr with the required rate of return. 

Limitations of Internal Rate of Return 

1. It involves tedious calculations 

2. It produces multiple rates, which is confusing. 

3. In assessing reciprocally, special offers in the project with the 

maximum IRR would be chosen up to the eliminating all others. 

However, in practice it may not turn out to be one which is the most 

profitable and consistent with the objective of the firm i.e., 

maximization of the shareholders. 

4. Under IRR method, it is assumed that all intermediate cash flows are 

reinvested are the IRR rate. It is not logical to think that the same 

firm can reinvest, 

 The cash flow at different rate.  To have accurate and dependable 

results, it is understandable that they should be grounded on truthful 

estimations of the interest rate at which the income and should be 

reinvested. 

5. The IRR rule comparing the projects IRR with the opportunity cost 

of capital.  But sometimes there is an opportunity cost of capital for 

1 year cash flows a different cost of capital for 2 years cash flows 

and so on. Here, there is no humble index for appraising the IRR of 

a project. 



    

 
36 

Software Project  

Management 

 

36 

2.8 RISK EVALUATION 

2.8.1 Introduction: -  

Experience has taught us that any project can fail and the reasons for 

failure are aplenty, lack of effective management, lack of proper 

Engineering or occurrence of some unforeseen events. A risk is any 

condition or event whose currently not certain but if were to occur it 

would have a negative impact on the outcome of project. According to the 

description of risk, one can originate the following. Occurrence is a 

probabilistic condition. It will have a negative impact on the project where 

the event to occur. Risk is those event that may or may not occur but if 

they were to occur, they would have a negative impact on the project. One 

may confuse with those events that are likely to occur but those who is 

exact nature is not known in advance. 

However, such events are not risk they are normal events that are likely to 

happen during the project the only problem is that the exact nature is not 

known in advance example they are bound to be some problems in 

programming which need to be identified and dealt with in the project 

itself. Risks are probabilistic event which everyone is hopeful that they 

would not occur however if risk events were to materialize, they would 

surely harm the project. Risks are a normal component which is 

complement in IT projects.  On the other hand , IT projects are themselves 

a risk as the technology keeps changing and can make the project out of 

work even before it had been completed. 

The positive side is that risks are foreseeable events that the project 

management team can plan for hence risk management plan is an 

important necessity for managing large IT projects and is included in the 

project management plan. The project management plan provides details 

as to how the risks will be identified, analyzed and controlled. Consider 

that you are planning to host computer programming contest in your 

campus for which uninterrupted power supply is an absolute necessity. So, 

the one clearest that you have identified this power outage.  Power Failure 

is probabilistic event that it may happen or may not. However, if there 

were to be a power failure the project would be affected.  Therefore, to 

overcome the risk each computer must be provided with an uninterrupted 

power supply. The above example says that the risk management requires 

additional cost.  The cost to provide an UPS to every computer will be an 

additional cost. 

Hence, risk management can be cost effective if the cost incurred during 

the risk management is less than the cost which would have been the 

expense if the risk were to materialize. Another factor of consideration of 

risk management is that it is impossible to correctly estimate the costs 

during the estimating the value of risk. Continuing with the above example 

of the power did not fail then the cost of providing an UPS was a complete 

waste.  No one can say so there was not guarantee that the power would 

not fail. As risks are probabilistic events there is likelihood that the risk 

management system would not be used at all.  In such a scenario the value 



 

 
37 

 

Project evaluation and 
Programme Management 

provided with the risk management system is defined in terms of the 

potential value provided which can only be estimated. Primarily risk 

management has two components, name risk management and risk 

control.  Risk assessment involves risk identification, analyses and 

prioritization while risk control involved risk management planning, 

resolution and monitoring. 

2.9 BASIC CONCEPTS IN RISK MANAGEMENT  

2.9.1 What is software risk? 

Risk divided as various when certain event that happen due to change in 

various factors in the software development. Risks are condition which 

may or may not arise that have positive or negative effect on the project's 

ability to reach set objective. Every project has some degree of the risk 

that there is quotient identified with IT projects is even higher in the given 

speed by which that IT technology changes. New technology which may 

come along and outdate the technology used in the project even before the 

project has been implemented. 

However, most risks can be identified and planned for.  Thus, risks are 

foreseeable events which may make it possibly for the project team to 

make adequate arrangements to neutralize the disc negative effect they 

may have on the project. The risk management plan is entering integral 

component of the overall project management plan. There is management 

plan is an integral component of the overall project management plan. 

During the development of the risk the major event is identification of risk 

and its management. The risk analysis process starts with detailing the risk 

under the various risk analysis factors as mitigate, monitor, and manage. 

The format to check and analyze the risk is known as CTC (condition 

transition consequence). Thus, the risk management process comprises of 

risk identification, assessment and resolution and is key tools in the 

smooth completion of the project.  

2.9.2 Risk Evaluation 

Risk management process is an integral part of the execution phase.  

Though risk management process is initiated in the project planning phase 

is continuous right through the execution phase till the completion of the 

project.  

1) Concept of proactive and reactive risk strategies 

(a) Reactive risk strategies 

(i) These risks have a smaller impact on the project 

(ii) Reactive risk strategies are usually removed at the time 

of the occurrence either at the compile time or at the 

runtime or any other time of the SDLC stage of the 

project. 

(iii) This strategy does not have any predefined layout rules 



    

 
38 

Software Project  

Management 

 

38 

(b) Proactive risk strategies 

(i) This will have a great impact on the project deployment 

(ii) Is estimated and probable risk before the start of the 

project 

(iii) The steps for precaution are designed as the risk is 

analyzed at the beginning 

(c) Types of software risk 

(i) The various types of the associated risk can be 

categorized in the basis of the delivery schedule which 

can be related to time 

(ii) The risk which reaches the financial impact on the 

project and the management at termed as financial risk 

(iii) The one which relates to the operation and the working 

of the project with regards to the specification and 

requirement under the technical and functional risk 

2)  Risk Management process 

Creating a central database for all the information related to risks, 

documents of all risk item and the resolution strategies then adopted. 

Such a database proof useful to future projects which may encounter 

similar was they may refer to the process was that was adopted to 

resolve the risk. Summarizing risk information and including it in 

regular status meeting. Continuously valuing risk and develop 

strategies to resolve them 

1) Risk identification 

 Risk identified in the planning phase will evolve over time 

some risk may be eliminated while some of the new ones may 

be added to the dist. resolve this should be struck at the list and 

the new ones should be added 

2) Risk assessment 

 The risk management process is created baseline and kept 

ready in the project planning phase for the execution phase. 

3) Evolution of risks 

 Generally, probable risks have been identified in the project 

planning phase, but they become more definitive during the 

execution phase. The project manager is in a better position to define 

and specify the Risk items.  

4) Management An Iterative Process 

 This management is an iterative process which is initiated at the 

project planning phase and then continues right through the entire 

lifecycle of a project in the execution phase a better idea of the likely 

risk is developed enabling the project manager to devise action plans 

to deal with them.  



 

 
39 

 

Project evaluation and 
Programme Management 

5) Risk meeting 

 This meeting contributes to the process of risk identification and 

development of face plan to tackle the risk. Collective mind enables 

better and faster identification of and resolution of list and should be 

encouraged a risk identification meeting and not one time process 

they will have to be held time again. 

6) Risk resolution 

 All risks may not have the same impact on the project. some may be 

grave while others may cause mild bruising and risk are graded 

according to the ability to impact the project and resolution 

strategies are developed. 

2.10 RISK IDENTIFICATION 

Identification of risk is the most difficult work in project management. 

Risk is an integral part of an IT project and therefore risk identification at 

the earliest becomes more critical. This identification is an iterative 

process where the project manager and his team are always on the 

Lookout for the risk in the project. Risk identification need to be done 

throughout the project lifecycle because as the project is newly developed 

there is high chances that anything unwanted could intervene and pose a 

threat to the project. An idealistic situation would be one in which all the 

likely threats would be identified before the execution of the project and 

prepare oneself to counter it once the threats approach. But the reality is 

that new risks might originate as the project progress and hence the project 

manager and his team must be always alert and identify this and nub them 

at the bud stage. Risk can be categorized based on the size of project and 

the software developed and then the risk is identified and modified 

accordingly. The risk which creates a business impact due to the 

constraints imposed by management or the marketplace during the 

development phase. 

2.11 RISK COMPONENTS AND DRIVERS 

The risk components can be identified and defined depending on the 

criteria of performance, support, cost and the schedule of the project. 

Some of them are  

• Performance risk- if the specification of the clients is not met the 

final project.  

• Support risk- the support the application developer provides after 

deployment of the project 

• Cost risk - to maintain the time and the cost of the project 

• Schedule risk - the schedule and the parameters of deliverables 

should be maintained.  



    

 
40 

Software Project  

Management 

 

40 

2.11.1 Several Tools in for Mangers in Risk Management  

There are several tools available to help the project manager in 

identifying risk 

1)  Project documents - it is the first place to start looking for the 

project risk, project plans, resources, etc. are there to identify the 

potential risks in different stages of the project. 

2) SWOT Analysis- it is a technique to examine and estimate the 

strengths, weaknesses, opportunities, and threats in a project. It will 

also clearly identify the areas of improvement as well as the areas of 

failures in the project. 

3) Brainstorming - a brainstorming session is one in which the project 

team sits together and analysis the risks. A brainstorming session is 

one in which the participants can let the imagination go wild there is 

no restriction on the number of things to be identified. On the other 

hand, the team is encouraged to identify anything that remotely 

resembles a risk. 

4) Delphi Technique - although the brainstorming sessions do manage 

to identify the likely risk factors, but few participants shy away from 

identify risk on account of personal reasons. To overcome these 

limitations, the Delphi Technique is adopted. The Delphi Technique 

comprises of surveys which are anonymously conducted among 

team members to build consensus on risk events. 

5)  Assumption analysis – as all the projects are based on 

assumptions, so these assumptions need to be verified in order to test 

their validity. When the assumptions are not verified then they 

become potential risks in future in the project. Assumption log 

should be an integral part of the project document. 

6) Root Cause Analysis – this analyses the negative or the positive 

effects that the project is experiencing and then takes a dig to the 

root of the effect to identify the cause 

2.12 RISK ASSESSMENT 

The analysis of the risk factors is the most crucial step in risk management 

as it determines the probability of their occurrence and the quantum of the 

effect they might incur on the project. Risk assessment is carried out in a 

sequential manner where the quality analysis is first done, and it is then 

followed by the quantity analysis. 

A] Quality Risk Analysis – it is a subjective approach and so does not 

involve detail analysis of the risk. It does not determine the 

probability of their occurrence and the quantum of risk that would be 

faced by the project. the main reason for conducting this is to decide 

whether the risk qualifies for further analysis. It is generally carried 

out using a risk matrix which is also called as a probability- impact 



 

 
41 

 

Project evaluation and 
Programme Management 

matrix. In this Risk is “rated” for its probability and the Impact on a 

scale to understand the Risk Matrix. 

B] Quantitative Risk Analysis – after successfully completing Quality 

Risk Analysis, more serious research on the risks which pose as true 

potential threats are carried out to plug their chances of occurrence 

and the quantum of the effect, they might possess on the project. The 

main drawback of this process is that it takes a lot of time to do the 

detail analysis and as a result budget associated with it also 

increases. The probability of the risk of occurrence and the quantum 

of the effect can be mapped in a controlled environment.  

2.13 DECISION TREES 

A decision tree is a graphical representation of the logic in a decision-

making process and the sequence of the decision points that creates the 

decision. It has many branches as logical alternate, and it simply sketches 

the logical structure based on the state policy. It is a useful technique for 

representing analysis when the decision maker must make a sequence of 

the decisions. It is referred to as the decision tree as different alternatives 

form branches from an initial decision point known as the decision node 

and then moves onto the various options in emanating from different 

points called Chance Nodes. 

A system analyst has the following considerations while constructing 

decision tree 

a. Branches of the tree should represent the various alternatives 

available 

b. The flow should proceed from left to right 

c. The values associated each alternative must be shown at the end of 

the branch 

d. All the alternatives available to the decision maker should branch 

out from the root node which is the starting point of decision tree. 

Decision Rules and Decision Tables are used together.  Decision Rules 

enables decisions to be made better and more cost effectively. As a result, 

Decisions could be faster and more precise. Decision Rules and Tables are 

used for Programmable or routine operating decision. It is, therefore, 

authoritative that decision rules are to be noted for references.  

2.14 PROGRAM MANAGEMENT 

According to program management institute – “a program is a group of 

related projects managed in a coordinated manner to obtain the benefits 

and control not available from managing them individually.” Programs 

may take in basics of related work outside the possibility of the distinct 

projects in the program. Some projects inside a program can distribute 

valuable incremental assistances to the organization even before the 



    

 
42 

Software Project  

Management 

 

42 

program itself has completed. Program management is a coordinated 

management of related projects which may include the related business as 

usual activities that together achieves beneficial change which is of 

strategic nature for an organization. Programs will differ across different 

industries and business sectors but there are core program management 

processes which is used in all the industries. 

Program management can be selected as a coordinated organization which 

gives direction and supports in the application of the Portfolio of projects. 

These activities together will achieve the outcomes and realize the benefits 

that are of strategic importance to business. Effective and efficient 

program management is the key factor for the success to any organization 

to transform the company's vision and various interrelated strategic 

objectives spanning across different areas such as project delivery 

processing and so forth. So, a Program consists of several interlinked 

projects which contribute to attain of the strategic plan. The projects 

within a program are related with each other and so need to be coordinated 

and controlled in a manner that delivers benefits on a larger scale which 

would not have been possible if managed individually. Project 

management is a process of handling numerous related projects regularly 

with the purpose of improving the organization's performance. 

When the project program is too large for a single project manager to 

handle then number of project managers are engaged to run the smaller 

projects.  So smaller projects with the multiple project managers are 

considered to achieve a single long-term goal, objective or benefit for the 

organization.   

The program manager is not concerned with the day-to-day running of the 

individual project but is the responsibility of the project managers. The 

program manager needs to ensure that all the projects are running on target 

and that each will achieve its overall contribution to the program. The 

activity undertaken during the program management are 

• Setting the baseline 

• Approving roles and responsibilities 

• Program planning 

• Project priority  

• Stakeholder communication 

• Progress reporting 

• Managing benefits 

• Quality management 

• Risk management 

• Issue management 

• Program closure 



 

 
43 

 

Project evaluation and 
Programme Management 

A Program usually starts with a vision of a changed organization and the 

benefits that will be incurred from the change. Delivering the change 

organization will involve coordinating several projects and ensuring that 

their outputs are used to deliver benefits. This will need modification in 

management of business-as-usual activities 

A detailed specification of the end state of the program is called a 

blueprint however the scale of the program the impact of the dynamic 

business environment mean that intermittent or regular redefinition may 

be required. The core management processes are 

• Project coordination – It identifies, initiating, accelerating, 

decelerating, redefining, and terminating projects within the 

Program.  Managing interdependencies between projects and within 

projects and business-as-usual activities 

• Transformation - Taking project outputs and managing change 

within business-as-usual so that output delivers results 

• Benefits management – Defining, quantifying, measuring, and 

monitoring benefits 

• Stakeholder management and Communications - Ensuring the 

relationships are developed and maintained. Thus, permitting 

productive and the two-way communication with all significant 

stakeholders 

Responsibility for these components lies with three key roles- the program 

sponsor, a program manager and business change managers 

The sponsor is accountable for the achievement of the business case and 

providing senior level commitment to the program. 

The program manager is responsible for the day-to-day management of the 

program and Business change manager is responsible for successful 

transition and benefit realization 

 2.15 PROGRAM MANAGEMENT FRAMEWORK 

A group of related projects not managed as a Program like to run off 

course and fail to achieve the desired outcome. There are eight important 

areas in which Program management framework, and they are:- 

i. Vision - The vision will usually be a brief statement of the intent 

communicated down from the leadership.   

ii. Aim and objectives - The aim and objectives of is more detailed 

statement and that explains exactly what is required 

iii. Scope - The scope provides boundaries to the Program explaining 

what exactly to be delivered at the end of the project 



    

 
44 

Software Project  

Management 

 

44 

iv. Design - Design is the way in which the project that make a program 

are put together. 

v. Approach – It is the way the Program will be Run 

vi. Resource Management - Resource management look at the 

scheduling and allocation of resources both with short-term and 

long-term views. 

vii. Responsibilities - Responsibilities are identified and located related 

for each area of the program. Every associate of the Program must 

undoubtedly understand his or her characters and the roles of the 

other team members 

viii. Benefits realization - Benefits realization is the process at the end 

of the program by which the benefits which were identified at the 

beginning of the program are being measured towards the end. 

2.16 STAGES IN PROGRAM MANAGEMENT 

There are four stages that take a program from the initiation to the 

finalisation of a project which has a defined business objective or benefits. 

The four stages in the program management 

1) Program identification - This is the high-level process where the 

strategy and direction of the organization are decided. It is from this 

that the Programs require and determines the strategies for the 

realization of the program. The document for each Program is 

produced demarcating the business case, aligning it with the 

strategies and scope as well as with the expected business  

2) Program planning - The Program planning is where the design of 

the Program takes place. The program manager who is creating the 

program will do the following 

• Define clear objectives 

• Agree and approach 

• Agree to the roles and responsibilities with the team 

• Set up communication channels 

• Agree with the priorities of the project that make up the 

program 

• Complete project planning 

It is important at this to identify adequate levels of resource from earlier 

projects and identify the requirements for later project.  

3) Program delivery – in this stage, the project manager runs the 

project. The Program managers duty in this period is to monitor the 

progress as a service and report the progress to the direction-finding 

committee or the leadership. The program manager considers all the 



 

 
45 

 

Project evaluation and 
Programme Management 

projects and must ensure that the programs is aligned with the 

overall objectives and strategy of the organization 

4) Program closure - Like projects, Programs too have finite life and 

are closed after they achieve their defined business objectives or 

benefits. Before the program is locked out, the program manager 

must reveal to the management that the wanted benefits to have been 

achieved, often called benefits realization. These benefits are those 

that were identified in the first stage of program identification  

2.17 MANAGING THE ALLOCATION OF RESOURCES 

WITHIN PROGRAM 

A program is a group of related projects which means our resources 

namely people of the organization must be shared within concurrent 

projects. Organization generally has a pool of people having expertise like 

developers, network experts, database designers, etc. These people will 

have to be shared with the number of the projects running within the 

program. The program manager will have to ensure the optimal use of the 

specialist staff and plan the allotment of this staff to the individual project 

within the program. This means that some activities in the project will 

have to be delayed until the requirement staff has been completed with the 

previous task allotted to him. The program manager will have to ensure 

the highly paid technical staff are utilized to optimum and utilization is not 

intermittent. Thus, allocation of resources is critical from the point of view 

of success of the program. 

2.18 STRATEGIC PROGRAM MANAGEMENT 

The strategic program management consists of six interrelated managerial 

tasks 

A) shareholder’s analysis – Shareholders are those who effect or can 

be effect by the Program. Stakeholder analysis is not a lengthy 

process but is tricky as it requires a management to identify the 

conflicting expectation the different stakeholders and their power 

and influence on the organization. 

B) Vision mission and objectives 

i. Vision - Sets the purpose of the business organization. It also 

states the direction of where to go. 

ii. Mission - The mission statement outlines how the vision is to 

be translated into reality. It also states what is to be done to 

achieve the vision.  

iii. Objectives - These are quantifiable target which will enable 

management to measure the success of the strategy. It enables 

measuring the success of the strategy  



    

 
46 

Software Project  

Management 

 

46 

C) Analysis of factors influencing strategy formation - Business are 

subject to various factors which influence strategies and over which 

they have limited or no control at all. 

i. Environment analysis - Government policies, change in 

customer attitude, technological changes are the important 

factors that the organization should be watchful and predict the 

environment in which it has to operate 

ii. Firm analysis - it is important that the firm identifies own 

resources and analyses them for their ability to deliver. Firms 

should allocate and utilize the resources in most efficient 

manner to get maximum return on investment 

iii. Industry analysis - To develop good and sound strategy for 

the business, it is necessary to understand the industry in 

which the business operating or proposes to operate. The 

competitive forces within the industry have a lot of bearing on 

the strategy formulation. It is important that the strength of the 

competitors is also analyzed. The size and trends of the 

industry also need to be considered. 

iv. Product analysis- The business needs to analyze the 

competitive position of its products in the context of the 

development in the market 

D)  SWOT analysis - SWOT analysis combines the analysis of the 

firm's internal and external environment. The strength and the 

weakness of the firm are in the context of the opportunities and 

threats. The aim of this analysis is to achieve an optimum match of 

the firm’s resources with the environment as well as with their 

objectives of attaining competitive advantage. The firm should build 

its own strength, adopt a strategy that either hides the weaknesses or 

reduces them, makes maximum of the opportunities using its 

strength and anticipates threats and reduces their exposure 

E) Generate strategic options - Strategic options are generated on the 

based on the analysis undertaken so far. The strategies generator 

should be able to provide the firm competitive advantage, discover 

alternative strategic course and provide alternative methods to 

engage strategies 

F) Evaluating strategic options - It is very problematic to find the 

strategic option to be selected despite of all the analysis. Strategic 

management is more of an art than science. Moreover, the decision 

maker should also try to use all the various quantitative and 

qualitative techniques available before finalizing the strategy. 

G) Implementation monitoring and review – In the Implementation 

stage, the strategy must be clubbed with the operational plan, 

organization chart, clear job description, procedures and manuals, 

budgets and control systems. 



 

 
47 

 

Project evaluation and 
Programme Management 

Budgets confirm that the execution is per the plan. Objectives of the 

budget and constant monitoring ensures that the strategic objectives are 

accomplished. 

2.19 CREATING A PROGRAM 

2.19.1 Program mandate –  

The process of generation of a program is activated by the creation of a 

consensual program mandate. The program mandate is a formal document 

that mainly gives the details 

i. Abilities of the program 

ii. Development that the ability of the new program will bring to the 

organization 

iii. Contribution of the program towards organizational goals 

The formation of the program mandate is followed by the appointment of 

a person to lead the Program and holds a prominent position in the 

organization usually coming from the supporting group. The necessity for 

the prominent position will specify the importance of the program to the 

organization while the need for the person to come from the supporting 

group is that these people have identified the need for the program and 

that they are totally aware of its implications in the organization  

Program brief –  

The next step in the program construction is the construction of a program 

brief. The Program briefly undertakes the study of the feasibility of a 

program the program. The program brief comprises of 

i. Preliminary vision statement outlines the requirements of the 

organization   

ii. Highlighting the Benefits that the program will create for the 

organization 

iii. The program shall also identify the risk that the program is likely to 

encounter 

iv. Will also highlight the resources required and the timelines for the 

implementation of the program 

2.19.2 The vision statements: -  

The program brief provides the supporting organization with sufficient 

information to decide whether the program is worth undertaking. If the 

program brief is found to be worthy, then only it will be sent to the next 

stage where detailed planning is done. A small team will take up the 

planning and a program manager with the similar experience will be 

appointed to handle the day-to-day responsibilities of the program. The 

primary job of the team and the manager is to fine tune the preliminary 

vision statement.  The re-defined vision statement of the program should 



    

 
48 

Software Project  

Management 

 

48 

be able to highlight the capabilities of the program and how it will 

improve the organization and its performance. The main drawback of the 

vision statement for the program is that it will not be able to provide the 

exact financial details and the performance of the program.  

2.19.3 The design / blueprint: -  

The design provides the changes to be made in the structure and the 

processes for the organization to achieve the improved ability as described 

in the vision statement. The Design or the blueprint provides the following 

i. new processes that are essential for the project 

ii. Changes in the organizational structure 

iii. Staff and skills required to change the structure 

iv. Cost and performance associated with the program 

The design states the way the objectives of the organization as stated in 

the vision statement would be accomplished. The design offers the 

particulars of the working of the program. The design also provides when 

the predictable benefits from the enhanced abilities will be realized. The 

Management structure who will undertake the proposed changes is also to 

be planned. The program manager will have to make a list of projects that 

will ultimately enable the organization to achieve its objective. These 

projects will be listed in the program portfolio in the order in which they 

should be executed along with the estimated timescales for each of the 

individual project within the portfolio.  

It is natural that the program will affect many different groups within the 

organization. Some groups will be directly affected while others will have 

to adjust in their mode of operations in order to facilitate the program. The 

design should be able to identify all the stakeholders who are having an 

interest in the program or its outcome. Once identified, they should be 

included in the communication plan of the program and made sure that 

they are provided with the updates of the program. It is understandable 

that it is not possible to plan all the projects within the program in the 

beginning as more particulars will develop as a program progress. 

However, a preliminary plan can be drawn detailing the portfolio of 

projects, cost estimates for each project, expected benefits and risk and 

resources needed. Once the preliminary plan is ready, it is possible to 

create a financial plan. Based on the financial plan,   the Management and 

Organization can make a budget arrangement in order to meet the 

expected cost as per the time they would be required. 

2.20 SOME RESERVATIONS ABOUT PROGRAM 

MANAGEMENT 

Program management has a much wider context than that of the project 

management. According to a Project Management Institute (PMI), “A 

program is a group of related projects managed in a coordinated manner to 

obtain benefits and control not available from managing them 



 

 
49 

 

Project evaluation and 
Programme Management 

individually. Programs may comprise of essentials of connected work 

outside the scope of the distinct projects in the program. Some projects 

inside a program can distribute useful incremental assistances to 

organization before the program itself has completed.” 

So, a program comprises of many interlinked projects which contribute to 

the success of the strategic plan. The projects inside the program relate to 

each other and hence need to be coordinator and controlled in a manner 

that delivers increased benefits and it would not have been possible by 

managing them individually. Project Management in the process of 

managing several related projects with the intentions of improving the 

organization’s performance. 

Programs may also consist of elements of linked work which are outside 

the scope of individual projects inside the program. However, the program 

manager should have the foresightedness of the purpose and status of the 

projects in a program. He can use this foresightedness to support the 

project level actions to ensure the program goals are achieved. The project 

manager should be provided with the program perspective or ideas and 

approaches to solving project issues that would have an impact on the 

program. 

Within a program, there is a need to identify and manage the cross projects 

which have dependencies on each other. Generally, the project 

management office does not have sufficient knowledge of the risk, issues, 

requirements, and design solutions to be applied to manage the program 

successfully. In such situations, the program manager is in a better 

position to provide the insights by proactively informing others on it.  

2.21 AID TO PROGRAM MANAGEMENT: -  

2.21.1. Dependency Diagrams: -  

The program manager must be able to track the dependencies between the 

projects that make up the program and this is generally done with the help 

of Dependency Diagrams. A Dependency Diagrams helps to track the 

critical dependencies of cross projects throughout the Programs. This 

provides two advantages to the program manager- 

i. It guarantees that the complex network of project and their 

interdependencies are coordinated and synchronized. 

ii. It helps in tracking of the flow of work completed by different 

projects teams associated in the program. Moreover, it also ensures 

that all the works are properly integrated with each other. 

However, the dependency diagrams should not be confused with the 

program plans. Program plans only show the milestones of the different 

projects and highlights the benefits that would be achieved in the end 

while the Dependency Diagrams helps to track and coordinate project 

interdependencies and eases the work pressure of the program manager. 



    

 
50 

Software Project  

Management 

 

50 

2.21.2 Delivery Planning: -  

The Dependency Diagram is just a forerunner to a more detailed Program 

planning diagram. A detailed program includes tranches of projects. A 

tranche is a group of projects that deliver their products at the same stage 

of the program, and it is not possible to move ahead without the 

completion of this stage. The primary criteria for grouping these projects 

are that the collective deliverables of these projects act as new benefits to 

the clients. Moreover, the tranches of projects are formed to avoid clashes 

for scarce resources as it may permit optional sharing of scare resources. 

They can be identified through the project briefs defining the scope and 

objectives of each individual project in the whole Program. Each project 

tranche delivers some tangible benefits to the customers. 

2.22 BENEFITS MANAGEMENT 

The most important aim of benefit management is to ensure that the 

expected benefits from the desired project and program has been 

materialized. Benefits management has gained importance as the 

organizations are becoming more aware of the lack of tangible evidence of 

the returns on investment in information Technologies in terms of improve 

productivity. Though many organizations have reorganized their business 

processes in order to improve the effectiveness and efficiencies, but the 

expected benefits have not been realized. As a result, benefit management 

exercises are undertaken to mend the defects of the management. Hence, 

the benefit management exercises start with – 

i. Defining the expected benefit from the program 

ii. Analyzing the difference in cost and benefits 

iii. Planning the Achievement and measurement of benefits 

iv. Allocating responsibilities for the successful delivery of the benefits 

v. monitoring the realization of benefits 

Other benefits from enhanced activities can be of different types.  

Some of these benefits are 

• Improve quality of services 

• Increase productivity 

• easier compliances of mandatory changes 

• Motivated workforce 

• Better internal management 

• Fraction in risk 

• Revenue management 

• Reduction of cost 

• Strategic alignment 



 

 
51 

 

Project evaluation and 
Programme Management 

Moreover, it is necessary that the program should be undertaken with only 

one benefit in mind. On the other hand, the program should be taken with 

more than one benefits in mind, and they should be interlinked. They will 

help to Quantify the benefits and valued with increased productivity. 

However, some of the merits may be accompanied by demerits for others. 

For the better functioning of the Benefits Management Business, it is 

advisable that the developers of the program work in a coordination with 

the users of the program. 

1.23 SUMMARY: -  

A business case provides justification for undertaking a project, 

programme or portfolio.  It provides a comprehensive analysis of all the 

pros and cons of any particular project.  It provides the decision makers, 

stakeholders and the public with a management tool for evidence based 

and transparent decision making.  It is a framework for delivery and 

performance evaluation of the subsequent policy, strategy or project to 

follow thereafter.  Project portfolio management is a strategy that 

evaluates potential projects by their prospective success and risks, then 

delegates staff, resources and timeline in a way that maximizes 

organizational performance.  A cost benefit analysis is the process of 

comparing the projected or estimated costs and benefits associated with a 

project decision to determine whether it makes sense from a business 

perspective.  The different cost benefit evaluation techniques are software 

project management, goal setting motivational software, etc.  Risk is the 

possibility of something bad happening.  Risk involves uncertainty.  Risk 

management is the process of identifying, assessing, and controlling 

threats to an organization's capital and earnings.  These risks stem from a 

variety of sources including financial uncertainty, legal liabilities, 

technology issues, strategic management errors, accidents and natural 

disasters.  Programme management means managing a programme, it is 

divides into 4 stages i.e. initiate, plan wisely, execute and time to close.  

Strategy is an action that managers take to attain one or more of the 

organizational goal.  Some factors involved in it are stakeholders and 

leaders, project priority, resource allocation, risk assessment and company 

culture.  Everything has its own pros and cons; the advantages of program 

management involve achieving overall strategic goals of an organization.  

Improve management of projects interdependencies and impact on the 

business as usual.  Effectively managing the resources, among the projects 

withing a programme, manage risks etc.  The biggest disadvantage of 

project management is that it sometimes leads to overlapping of authority 

and responsibility between the top management and project management, 

where they have different plans in mind which leads to confusion among 

the team members of the project and further project suffering.   

 



    

 
52 

Software Project  

Management 

 

52 

1.24 QUESTION: -  

1. What is project portfolio management?  

2. How are individual projects evaluated? 

3. Explain the cost- benefit evaluation techniques.  

4. What is risk management? Describe its details.  

5. What is Software risk? State it's types. 

6. What is program management? State the core program management 

processes. 

7. Describe the eight important areas of program management 

framework.  

8. Explain in detail the different stages in program management.  

9. Briefly describe the various aids to program management.  

10. What are the objectives of Benefit Management.  

1.25 REFERENCES 

• Project and Program Evaluation Consultancy With Terms of 

Reference, Challenges, Opportunities, and Recommendations by 

Moses Jeremiah Barasa Kabeyi - Durban University of 

Technology 

• The basic project management reference library Cook, Desmond L. | 

Adams, John R. | Hannah, H.  

• https://www.routledge.com/The-Basics-of-Project-Evaluation-and-

Lessons-Learned/Thomas/p/book/9781482204537 

• The Basics of Project Evaluation and Lessons Learned By  Willis H. 

Thomas 

 

 

 

https://www.researchgate.net/profile/Moses-Kabeyi
https://www.researchgate.net/institution/Durban_University_of_Technology
https://www.researchgate.net/institution/Durban_University_of_Technology
https://www.routledge.com/The-Basics-of-Project-Evaluation-and-Lessons-Learned/Thomas/p/book/9781482204537
https://www.routledge.com/The-Basics-of-Project-Evaluation-and-Lessons-Learned/Thomas/p/book/9781482204537
https://www.routledge.com/search?author=Willis%20H.%20Thomas
https://www.routledge.com/search?author=Willis%20H.%20Thomas


   
53 

3 
INTRODUCTION TO STEPWISE  

PROJECT PLANNING 

Unit Structure 

3.0 Objectives 

3.1 Introduction  

 3.1.1 Defining the business need 

 3.1.2 Business goals and objectives 

 3.1.3 Undertaking the feasibility study 

3.2 Creating the Business Case 

 3.2.1 Drafting a project scope statement 

    3.2.2 Prioritizing projects  

    3.2.3 Creating a Financial Plan 

 3.2.4 Approach to Planning 

 3.2.5 Creating Milestones 

 3.2.6 Planning and Contingency Planning 

3.3 Step 0: Select Project 

 3.3.1 Step 1:  Identify Project Scope and Objectives 

 3.3.2 Step 2:  Identify Project infrastructure 

 3.3.3 Step 3: Analyze Project Characteristics 

 3.3.4 Step 4: Identify Project Products and Activities  

 3.3.5 Step 5: Estimate Effort for Each Activity 

 3.3.6 Step 6: Identify Activity Risks 

 3.3.7 Step 7: Allocate Resources   

 3.3.8 Step 8 -Review/Publicize Plan 

 3.3.9 Step 9 & 10: Execute Plans/Lower Levels of Planning 

3.4  Questions 

3.5 Reference 

3.0 OBJECTIVES 

• To make aware of the Contents of the project plan. 

• To outline the general approach, in project planning. 

• Study about feasibility and its importance. 

• Define project scope and its description. 

• Describes project financial planning and approach. 

• Define contingency and its importance. 

• Explain in detail the different stages of project planning. 



   

 
54 

Software Project  

Management 
 

 

54 

3.1 INTRODUCTION  

The project planning phase is the longest and the most significant phase of 

the project cycle. Without proper and systematic scope planning, a project 

has a poor chance of success. Team members must decide on the budget, 

set timelines and identify the resources and any hindrances that one may 

meet in attaining success in the project. The project team validates the 

availability of resources, materials and expertise which are critical to the 

on-time project completion. Project team should spend the quality time in 

planning a project and should make any plan changes carefully before 

moving on to the next stage of the project. The team may table their 

project plans in writing to explain clearly the roles and responsibilities and 

deadlines of the project. From project manager’s point of view, project 

planning is the first step in the execution of the project. A project plan is 

iterative process that connects the approach and the intent of the manager. 

A project plan will provide the details of the processes that will be used in 

the project and how the project work will be implemented, controlled and 

commissioned. The first step in project planning is to research the business 

opportunities or the problems that the project aims to address. Good 

research will empower the project manager to develop proper 

understanding of the problem. The research can be done by interviewing 

the key stakeholders of the project. The project manager needs to know 

why the project is being started and what it means to complete it. The key 

success of the project success depends on the clear understanding on the 

part of the project manager and the stakeholder. The idea of the end result 

of the project should be mutually developed by the stakeholders and 

project manager.  

3.1.1 Defining the business need 

Every project has a driving business need and which ultimately identifies 

and defines the business need and is the first activity of the project 

manager or the business analyst to undertake. The business needs help the 

project manager in defining the project scope and developing the project 

plan. This also helps the project manager to understand the stakeholder’s 

requirements and end result that the project must accomplish. 

3.1.2 Business goals and objectives 

Whenever an organisation chooses to start a project, it must have some 

business goals or objectives that it wishes to accomplish. The goals or 

objectives could be anything like increasing the efficiency, enhance 

customer satisfaction, generate revenue, etc. Business goals reflect the 

business scenario that the organisation predicts once the project will be 

implemented. So, the first job of the project manager after the goals and 

objectives are determined is to make a current assessment of the business 

environment that had prompted the requirement for the change. The 

difference between the current state and the future predicted state 

generally indicates the scope of the project. By defining the business goals 

and objectives of project, the project manager is simply describing the end 

results of the project. The business goals and objectives help in defining 



 

 
55 

 

Introduction to Stepwise 
Project Planning 

the time and the cost associated with the project. For achieving the 

business goals and objectives, the project manager can take help of various 

tools such as brainstorming, discussions with its focus groups, 

benchmarking, etc. 

 3.1.3 Undertaking the feasibility study 

A feasibility study is a report of the research that the project manager has 

undertaken.  It helps in defining the validity or scope of the entire project 

or a part of the project. The feasibility study provides detail information to 

the management about a problem or the business opportunities that are 

realizable. Some feasibility studies may also cover the financial aspects of 

the project that is undertaken. Financial part of the feasibility study will 

tell the management whether it makes the financial sense in undertaking 

the project and will also indicate the return on investment. The project 

manager while making the feasibility report should refrain from 

expressing his view about the feasibility of the project.  The project report 

should be highly realistic and should cover all the aspects of the project, 

its ability to address the problem or realise the business opportunities, 

financial implications and the value that it will add to the organisation. 

The project manager should be reasonable in assessment and should not be 

attracted to impose new technology merely for the sake of Technology. 

The feasibility learning contains of the following: - 

1) Executive summary 

The purpose of the executive summary is to provide the reader with 

the brief summary of the findings of the feasibility study 

2) Define the business problem or opportunity 

Here, the business problems that the organisation is facing and its 

impact on the functioning of the organisation are debated. The 

business goals or objectives can be utilized to link the project to the 

problems. Moreover, the benefits of the proposed technology is also 

stated in the report.  The report should be able to identify the areas 

or people who are likely to be affected by the introduction of the 

new technology. 

 3) Purpose of business study 

The main purpose of any feasibility study is to determine the 

practicality of an opportunity or the solubility of a problem. There 

are number of reasons for which a feasibility study is done.  

• To determine whether a product should be purchased from the 

market or built in the organisation. 

• Compare the various Software and Hardware solutions 

• Determine capability resource cap with the new technology 

 



   

 
56 

Software Project  

Management 
 

 

56 

4) Assessment of alternative 

A feasibility study includes numerous alternative solutions for the 

business problem or opportunities. The project manager has to state 

in the report the alternatives evaluated, basis for selection of the 

alternative and the manner in which the alternative differs from 

another. 

5) Impacted Areas 

Here, the feasibility study identifies the impacted people, addresses 

the issues concerning the users and determines the capability 

resource gap. Generally, it cover the process of implementation of 

the new technology. Some of the issues addressed are; 

a) Possibly downtime the user will experience due to 

implementation of the project 

b) Phased introduction of the new technology within the 

organisation. 

c) Assessment of requirement for training, the number of users 

requiring training, the training period and the resources that 

will be needed to impart training 

d) Learning curve of the new software 

e) Methods by which the new software will integrate with the 

organisation’s existing software 

f) Specific hardware requirements of new software  

g) Compatibility of new software with existing operating system 

6) Financial issues 

The feasibility report will address the financial issues related to the 

project. Some of the problems are mentioned hereby 

i. Pricing of the new technology 

ii. Licensing fee and renewal period 

iii. Cost of training 

iv. Additional financial burden arising due to the requirement of 

the trained personnel 

v. Cost of labour required in the technology 

vi. Technical support from vendor 

vii. Loss incurred for not adopting the new technology 

viii. Return on investment analysis 



 

 
57 

 

Introduction to Stepwise 
Project Planning 

3.2 CREATING THE BUSINESS CASE 

Making of a business case document is very much similar to the feasibility 

report but in most of the cases it is a separate document. Like the 

feasibility study, the business case to can help the management in 

justifying the cost that will be experienced in the project and its return on 

investment. The business case is built and the relevance of the business 

goals and objectives and the cost of the proposed technology that can get 

the organisation there. The business case takes into account the cost of the 

solution, breakeven point, return on investment and maintenance cost. 

Along with the quantitative issues the business case, it may also address 

qualitative issues such as working comfort, increased efficiency, etc.  

3.2.1 Drafting a project scope statement 

The project scope statement is the most important document in the project 

planning process. The project scope statement is based on the project 

requirement, feasibility study, business goals and objectives and the 

business case. The project scope statement defines the project boundaries, 

project deliverable and the work needed to be done by the project team to 

accomplish those deliverables. The project scope statement is the output of 

the joint effort of the project manager, project sponsor and the stakeholder. 

As many people are involved in making and approving the statement, it 

undergoes considerable modification before it gets the final approval from 

the people who were in the project. It serves as the main document as the 

remainder of the stages in the planning process.  The deliverables that the 

project will create can be used as a reference point for future project 

decisions. 

Another significant factor of the project scope statement is that the 

definition of the project boundary. The project boundary is not only 

defining the advantages of project will do but also defines the 

disadvantages of the project. However, it is important to have the utmost 

clarity on the project boundaries. Another aim of the project scope 

statement is that it defines key performance indicators against which the 

performance of the project can be measured. The performance is usually 

measured at the key project phases otherwise known as milestones 

The component of the project scope statement is 

i. Project scope description - It is the description of the 

deliverables of the project that the client will get up on 

successful completion of the project. 

ii. Project acceptance criteria - The project acceptance criteria 

will define what the project should create to be accepted by the 

organisation 

iii. Miscellaneous deliverables - Besides, the key deliverables, the 

project scope statement should also define those deliverables 

that are part and parcel of the project 



   

 
58 

Software Project  

Management 
 

 

58 

iv. Project exclusions - Project exclusions are those deliverables 

that are not included in the project scope. To avoid the 

ambiguity the project boundary should be clearly defined 

v. Planning Constraints – The constraints that limit the actions of 

the project manager are to be clearly defined. 

vi. Project Assumptions – There are certain assumptions that are 

taken into account in a project. Some of the assumptions 

continue to support the management in the project. 

3.2.2 Prioritizing projects  

Every organization has multiple projects that are running at the same time 

and we may also find the same project manager's managing more than one 

project at the same time. In such a scenario, it is normal, that there are 

some projects which are similar and even some that may be conflicting. 

Every project may not have the same priority and the priorities also keep 

on fluctuating with time and environment. The management of the 

organization has to prioritize the projects created on the worth of the 

organization, the success rate of the project manager, and the resolution of 

the project. The role of the project sponsor is very vital in confirming that 

the project gets the priority from the management of the organization. For 

this to happen, the project sponsor should truly believe in the project, the 

technology, and the abilities of the project manager. Moreover, the project 

sponsor should have thump within the management to get priority 

treatment for the project that are important. Once the project sponsor has 

entirely believed the idea of the project than he should be ready to defend 

the projects whenever the need arises. However, for this to materialize, the 

project sponsor should be frequently updated about the existing status of 

the project. The role of the project manager is that of a middle man and 

acts as an intermediary between the project team and the project sponsor. 

Each and very communication regarding the project has to pass through 

the project manager. 

3.2.3 Creating a Financial Plan 

Many a times it has been detected that project managers recommend the 

use of the latest and most advanced form of technology without matching 

the utility of the technology with the requirements of the project. 

However, purchasing technology merely for the sake of technology is not 

a sensible decision and the project manager should refrain from doing so. 

While planning for technology the project manager should always keep a 

keen eye on the financial budget and aspects of the project. Depending on 

the requirements of the key stakeholders and the budget, the technology 

should be finalized. Henceforth, while finalizing the technology the 

project manager should ensure the following;  

 



 

 
59 

 

Introduction to Stepwise 
Project Planning 

• Technology selected should enhance the productivity of the 

company.  

• Return on Investment on the project should be within the acceptable 

boundaries of the project. 

• The proposed technology should perfectly integrate with the 

hardware and software infrastructure of the company. 

• Time for unfashionableness of the technology should be checked. 

Also, the time for next up gradation should be checked properly. 

• The breakeven point for the investment in the technology should be 

checked.  

• Vendor credibility should also be checked. 

While selecting technology, it is essential for the project manager to 

recognize which technology will produce the desired results. It is not 

always that the best technology accessible in the market is the prerequisite 

of the company. It may also be so that the requirements of the key 

stakeholders could be met with a lower version technology which is also 

cost effective. Hence, the project manager should not go for the best 

technology but the right technology. The right technology is the one that 

will bring the desired results to the company. Another contributing factor 

to the selection of technology is the predictable level of quality of the 

project deliverables. As, quality is a very relative factor, so while selecting 

the technology it should be ensured that the quality of the project 

deliverables meets the requirements of the key stakeholders of the project. 

The project manager should be careful in evaluating the expected level of 

quality and then make the selection of the technology that will meet the 

requirements and the objectives of the of the project. The time factor is 

another important factor of importance as a budgeting concern. 

Remember, time is money, hence the project manager should also consider 

the time commitment required from each member of the team as well as 

his own commitment to the project. 

3.2.4 Approach to Planning 

The project manager should approach the project planning stage 

cautiously. He should be aware of the resources in hand, the people who 

will be assisting him and the time he should give to the planning stage. 

Although planning is an iterative procedure and the project manager will 

be revisiting it time and again during the entire course of the project 

implementation, the project manager should decide in advance the time 

that he would be spending on the planning phase. The usual practice of 

determining the time one should spend on planning is that it should be 

directly proportional to the size of the project and the relevance of the 

project to the organisation. 

 3.2.5 Creating Milestones 

After having selected the technology, it is time to determine how the 

project will be completed, resources that will be required and the tasks that 



   

 
60 

Software Project  

Management 
 

 

60 

will be involved in the project. One of the most critical activities of the 

project planning is breaking the project into major tasks or milestones. A 

task is a simple breakdown of the project in the natural order or sequence 

of activities indicating what needs to be accomplished before moving on 

to the next stage of the project. The work breakdown structure indicates 

the major deliverables of the project and helps increasing the task list. The 

purpose of creating a task list is to ascertain the time frame for the project, 

resources needed, and the cost of the project. 

 3.2.6 Planning and Contingency Planning 

Planning is time consuming process, so the team manager should make 

extra efforts to closely monitor about the time spend by the project team 

members on planning. Though it had been agreed all the stakeholders to 

undertake research for planning but not easy to achieve as it is time 

consuming. At the same time, too much of research will be having 

detrimental effects on the project. So, it is always good to design certain 

specific goals and deadlines for the research. 

Generally, the project manger is helped in his work of researching by a 

team. The project manager should assign individual research topics along 

with the objectives of their research to each of the team members along 

with the deadlines for the completion of the research. After all the team 

members have completed the research, the information’s should be 

collected and decision should be made according to the research. Every 

main plan of the project should have a contingency plan ready 

simultaneously. A contingency plan is a back up plan which will be kept 

in reserve and will be resorted to in case the original main plan fails to 

deliver at any stage of the project. As a result, it is always desirable, 

essential and beneficial to keep a continency plan ready. Every project has 

multiple phases running simultaneously and in case the project manager 

finds out in any stage of the project that the main plan is not working as 

the requirement then he has the power to implement the continency plan 

after stopping the main plan. 

3.3 STEP 0: SELECT PROJECT 

After the business case is ready, it is sent to the management for approval. 

As in every organisation there are a number of ongoing projects, number 

of projects are waiting for approval, funding and resource allocation. So, 

each and every project has to compete with several other in order to see 

the light of day. The criteria for selection of the project and its inclusion in 

the company's product portfolio is similar to the analysis for a proposed 

project alternative. The management of the company has to strike a 

balance in the portfolio in such a manner so that the total sum of the risk 

associated with each project does not make the total portfolio a risky one. 

Generally, the projects selected in the portfolio has varying degrees of 

risks, technological complexities, size, resource requirements and strategic 

inputs. If a company only selects projects which have very low risk and 

technological complexities than it will fail to ride the technological wave 

and its employees will be feeling that their talent is not been being utilized 



 

 
61 

 

Introduction to Stepwise 
Project Planning 

properly and will be feeling stagnated due to the lack of the growth, 

challenges and opportunities. On the other hand, if the company whose 

project portfolio comprises only of risk and technically Complexities than 

the projects can end up in a dangerous. Therefore, it is necessary for a 

company to strike a balance in the Portfolio of projects having varying 

degrees of risk and technological complexity. Moreover, the organisations 

may be interested to undertake number of projects but is handicapped by 

the lack of resources and funds to finance each project and hence it has to 

prioritise and select the project. The selection process determines which 

project will be funded in a particular period. Though different 

organisations have their own selection process but a standard process is 

adopted by most of the companies. The first step in the screening process 

is in which the projects receive for approval as screen for the compatibility 

with the organisational standards. The projects which qualify the standards 

are sent to the decision-making committee for project approval. The 

committee that compares the submitted project on various factors such as 

risk, cost, complexity and time with the other projects in the company 

which are either on the verge of completion or have been recently 

implemented. Depending on the comparative analysis of the projects, they 

are either approved and assigned to the project manager for action or 

dismissed. 

3.3.1 Step 1:  Identify Project Scope and Objectives: - 

Project scope management includes the process required to ensure the 

project includes all the work required to carry out the project successfully. 

It is mainly concerned with defining and controlling the factors in the 

project. As per the Project Management Body Of Knowledge (PMBOK), 

the knowledge area of Project Scope Management includes five process 

namely scope initiation process, scope planning, scope definition, scope 

verification and scope change control 

a. Project Scope Initiation Process – In this process, the project 

sponsor gives the project manager the authority and resources to 

define the project. But it is only done when the project plan and 

charters are being developed. It is the first step in the project scope 

management and develops when the project sponsors authorize and 

provide resources to the project manager to develop the project 

scope management plan. This is similar to Business case but gives 

more details compared to business case. After authorization, the 

project is planned as per the IT project methodology.   

b. Project Scope Planning Process - The project scope planning 

process identifies the area of work inside the project including 

project’s work, activities and deliverables that will help to 

accomplish the projects MOV. Its main function is to set the 

boundaries of the project work. It is also important to identify which 

is not a part of project work in order to avoid future problems. It is 

not possible to prepare the project plan without project’s scope as it 

contains all the necessary information about of the work, activities 

and the deliverables that are to be achieved and without its 



   

 
62 

Software Project  

Management 
 

 

62 

knowledge, the team will not be in a position to estimate the 

schedule, budget and the resources that will be requirement in 

different phases of the projects. 

 c. Project scope definition process - The project scope definition 

process identifies the project deliverables. Project deliverables is the 

work that wants to accomplish in order to distribute a product with 

exact features and functions as committed to the client. After the 

setting of the project scope boundaries and developing a project 

scope statement, the foundation for defining the project scope is 

prepared. Project scope defines the deliverables that the project 

teams aim to achieve and the development of detailed project scope 

is critical to the success of the project. A detailed project scope 

defines the project boundaries, major deliverables, assumptions and 

the drawbacks that are documented in the project scope statement. 

Project deliverables are the features and functions that characterize 

the final product. The boundaries and deliverables defined by the 

scope planning and definition facilitate the development of the 

project charter and plan. The requirements of the project define its 

boundaries. Moreover, stakeholders need, wants, and expectations, 

are Analyzed and converted into project deliverables while ensuring 

that they do not cross the boundaries of the identified project scope. 

The assumptions and constraints are Analyzed for completeness 

with additional assumptions and constraints added if felt necessary. 

The project team members and other stakeholders who have 

additional insight into the preliminary project scope statement 

should Analyze and develop the project scope definition. There are 

two types of deliverables or scope, project-oriented 

deliverables/scope and product -oriented deliverables/scope. 

Bifurcation of the deliverables enables the project team to clearly 

define each deliverable, assign time, resources, and responsibility for 

its accomplishment. Such a bifurcation and allotment of work leads 

to better coordination amongst the team member and enables them 

to identify the place of each deliverable in the larger picture of the 

project. This facilitates the assigning of resources, estimation of 

time, and the calculation of cost of completing the work. Bifurcation 

of deliverables also lays to rest any ambiguity on the project's 

deliverables and expectations on the part of the stakeholders.  

d. Project scope verification process – The project scope defined 

needs to be verified. Scope verification is the method of procuring 

the stakeholders official acceptance of the completed project scope 

and the deliverables associated with it. The Scope verification 

process checks the scope for accuracy and wholeness. Scope 

verification guarantees that the project deliverables are 

accomplished as per the ethics placed in the delivery definition table 

(DDT). Scope verification includes the review of each deliverable 

and comparison with the standards specified in the DDT. Scope 

boundaries and deliverables should be agreed upon by the project 

sponsor and project manager. In case, the part of the project is being 

terminated early, than the project scope verification should properly 



 

 
63 

 

Introduction to Stepwise 
Project Planning 

text the stage and extent of its completion. One may tend to relate 

project scope verification with quality control; however, they differ. 

While project scope verification is concerned with the acceptance of 

the deliverables, quality control is concerned with meeting the 

specified quality requirements of the deliverables. Also, quality 

control is performed before scope verification although both can be 

performed simultaneously. Also, quality control is performed before 

scope verification although both can be performed simultaneously. 

e. Project Scope Change Control - Although the project scope has 

been set with the great planning and thought, changes are bound to 

crop up as the project advances and new information or needs that 

develops. Project scope change is like an unwelcome but 

unavoidable guest who barges in at any time and in any place. 

Change is an unavoidable part of IT project management. No matter 

how much planning goes into the project, the future is unpredictable. 

This permits the need for Project Scope Change Control to manage 

the changes. The need for change in project scope may arise due to 

various reasons like the project manager may discover a better 

method or a new feature or a request from management or customers 

to change the deliverables, or in some cases the cause for change is 

the manager himself. Whatever, be the reason for the change, if not 

managed properly can derail the entire project. To make changes in 

IT project management is a difficult process to incorporate, but it is 

almost a regular feature in every project due to the very nature of the 

industry. The change control process has to approve the change to 

initiate modifications in project schedule and budget.  The project 

scope change control process also guards the scope boundaries from 

expanding pointless due to demands of additional features and 

functions to the project scope. Moreover, each change request must 

be documented, the change tracked, request has reviewed, been 

accepted implemented or rejected or rejected, should and be 

conveyed to the stakeholder. as Whether it helps in the final scope 

verification with stakeholders who would recorded in the change log 

also not be puzzled as to why certain change requests have not been 

implemented. There is a direct relationship between the project 

scope, budget and schedule. There are 5 processes that make up the 

project scope management plan. The size of the project determines 

whether the scope management plan is to be a separate document or 

a part of the project charter. If it is large in size and more complex a 

separate scope management plan document should be created and 

the summary of it can be included in the project charter. The 

Cardinal rule for defining the project scope is that it should be 

aligned to the project’s objectives.  

3.3.2 Step 2:  Identify Project infrastructure: -  

As stated earlier, it is authoritative that the project manager develops a 

clear understanding of the purpose behind the project. Uncertainty should 

be avoided as it is likely to cost the organisation heavily. Clarity of 

purpose will help the organization save in terms of cost, time and effort 



   

 
64 

Software Project  

Management 
 

 

64 

and the project will be a success. Therefore, the first step in project 

management is to understand the purpose of the organization behind the 

project. Once the project manager is aware of what the project should 

produce, he can move ahead with its planning. Analysis of the 

Requirements is the first stage in software development process and 

encompasses those tasks that go into determining the needs or taking 

account of the possibly conflicting requirements of the various 

stakeholders. Analysis of the requirement in a project is critical for the 

accomplishment of the project. Requirements must be actionable, 

measurable, testable and related to identified business needs or 

opportunities. Requirements ought to be distinct to a level of detail which 

is sufficient for a system design. Requirements Analysis consists of three 

types of activities and they are 

i. Eliciting requirements: It is the work of communicating with 

customers and users to determine about their requirements and it is 

sometimes called requirements gathering.  

ii. Analysing requirements: It regulates whether the specified 

requirements are clear or not, checks the completeness and its 

ambiguous nature, or if any contradictory statement is present and 

then tries to resolve these issues in order to attain the desired 

objectives of the project. 

iii. Recording requirements: The Requirements of the project must be 

documented either as language documents or as a process 

specification. 

The easiest and most convenient approach for collecting the project 

requirement is to discuss with the key stakeholders. Discussing about the 

requirements of the project will help the project manager to understand the 

requirements better. In some cases, the project manager is assisted by a 

business analyst who will complete the requirement collection process for 

the project manager. The project manager can then discuss the 

requirement with the business analyst and stakeholder to get a clear idea of 

all the requirements. In the absence of a business analyst, the project 

manager has to gather all the requirements on his own. Although the work 

is too large but it will help the project manager in developing a clear 

understanding of project scope, quality expectations and then identify and 

address any threats to the project and its results. Many, at times it has been 

witnessed that the number of stakeholders is too large and it is not feasible 

for the project manager to interact with each and every stakeholder on a 

one-to-one basis. In such a situation the project manager can resort to web 

technology and conduct a survey or ask the stakeholders to nominate 

representatives amongst them to interact of a daily or project stage bases. 

The project manager can then meet the representatives and discuss the 

requirements that will affect the large number of stakeholders. 

In addition to the above method, a very effective alternative way of 

collecting requirement is to passively or maybe actively observing the 

stakeholders at work. This gives the project manager an idea of the 

requirements from the project by the stakeholders. Whatever, be the 



 

 
65 

 

Introduction to Stepwise 
Project Planning 

approach adopted, the project manager should ensure that all the key 

stakeholders are in agreement with the requirements from the project. 

Once the requirements and purpose behind the project have been defined, 

the project manager can determine the time frame that will be required for 

the completion of the project. Although, the management of the 

organization has set some time frame for the completion of the project, the 

project manager should make his own estimation based on the resources 

and the requirements that are available with him.For estimating the time 

frame, the project manager should be aware of the end result of the 

project. The end result of the project can be discussed with the project in 

charge. After the end result has been decided upon, the project manager 

can chalk out the path that the project should take. The project manager is 

solely responsible for setting the goals and deciding the path the project 

should in order to reach the desired goals. However, the project manager 

should develop the path after thorough discussion with the all the key 

stake holders. 

IT Project Management is a complex balancing act of technology between 

the internal and the external factors that are involved in the projects. Some 

of the external factors are demand, market conditions and the 

technological changes. Hence, the project manager should ensure the 

following in the first place;  

• Project has clearly defined objectives  

• Project has well defined end results  

• Project should spell out the exact requirements  

• Project should take into account any industry standard and 

regulation  

• Project should also take into account any government regulation that 

it should abide by 

• Project should have reasonable time frame for completion  

• Project in charge has the authority to take decisions  

• Project should have committed resources 

On his part the project manager should be of a very inquisitive mind. He 

should question each concept, technology and the time that will be 

associated with its implementation. The project manager should not judge 

everyone with the same yardstick. Every person in the organisation is 

bound to vary in their IT knowledge. So, while deciding on the technology 

that will be utilized in the project needs to seek answers to the following 

questions; 

i. Effect of the proposed technology on the users 

ii. Effect of the proposed technology on other solutions 

iii. Compatibility of the proposed technology with other operating 

systems 

iv. Experience of other companies using the proposed technology 

v. Track record of the vendor of the proposed technology 



   

 
66 

Software Project  

Management 
 

 

66 

3.3.3 Step 3 : Analyze Project Characteristics: -  

The first step in the project initiation stage was the determination of the 

business need and identification of key stakeholders. The project manager 

needs to Analyze the project characteristics and this can be done through 

the project charter. It is the time to draft the Project Charter. A project 

charter is a detailed official document prepared in line with the company's 

vision and goal. It describes in detail the finer shades of the project and 

helps in chalking out deadlines for the milestones to be achieved within 

the project. The Project Charter serves as a road map for the project 

manager and states the goals that are to be achieved from the project. A 

Project Charter provides a clear explanation of the project, its 

characteristics, the end results and the project authorities. Project 

authorities are the people who are responsible for the implementation and 

success of the project. A project charter is the final official authorization 

to the project manager for the commencement of the project. It is a green 

signal to the project manager to start the work on the project. The project 

charter and the project plan provide a tactical plan for the execution of the 

project. It is an agreement between the project sponsor and the project 

manager along with his team which documents the project's MOV, defines 

the infrastructure, summarizes the project plan, defines the roles and 

responsibilities and states project control mechanism. The project charter 

and the project plan should be developed simultaneously as the summary 

of the plan has to be included in the project charter. Moreover, the 

infrastructure identified in the project charter will influence the project 

schedule and the estimates in the project plan. In the development of the 

project charter and project plan, the project manager, the project team, and 

the project sponsor should be included. This will ensure that they all agree 

and subscribe to the assumptions and constraints in the project plan and 

that the goals and objectives of the project are achievable. 

1. Purpose of the Project Charter - A project charter serves the 

following purpose - 

• Defines the business need 

• Identifies the project sponsor 

• Authorizes the project 

• Identifies the project manager, grants authority and makes him 

responsible for the management of the project 

2. The Project Charter Covers the following aspects- 

i. Project's MOV - the project's MOV is discussed in detail in 

the business case. The MOV now needs to be agreed upon by 

both the project sponsor and the project manager and his team. 

Generally, the project's MOV drives the project and once 

agreed upon should not be changed. The MOV drives every 

decision in the project, the project planning process, and the 

requirement of resources. 



 

 
67 

 

Introduction to Stepwise 
Project Planning 

ii. Project Infrastructure - The project charter takes into 

account all the key resources, people, technology, methods, 

processes that take part in the making of the project. Though, 

the available infrastructure needs to be taken into account even 

while developing the project plan. The available infrastructure 

will help the project manager to plan the schedule and the 

budget for the project. 

iii. Summary of the project plan - The project charter should 

include a brief summary of the project scope, budget, 

schedule, quality objectives, key deliverables, and major 

milestones. Thus, the project charter should serve as a source 

of information to all those seeking details of the project. It is 

more like a ready reckoner that can be referred to by anyone 

seeking information on the project. 

iv. Roles and Responsibilities - Not only should the project 

charter identify all those involved in the project but all define 

their individual roles and responsibilities and their line of 

command. 

v. Project Control Mechanism - As the project progresses, new 

data and information arises a need to make changes to the 

project scope, schedule and budget will certainly be required. 

But, incorporating these changes is not an easy job and may 

make the project team lose focus. Therefore, to facilitate 

change the project charter should outline a process for change 

management. 

3.3.4 Step 4: Identify Project Products and Activities: -  

i. Project Products/ Deliverables 

The next step after the development and approval of the 

project scope statement is project planning. The primary 

requirement for project planning is the Work Breakdown 

Structure (WBS) for which the approved project scope 

statement is required. The WBS is a deliverable or a product 

oriented classification that regulates the decomposition of the 

job to be executed by the project team, to accomplish the 

project objectives and create the required deliverables or 

project products. Decomposition indicates the breaking down 

of the project scope statement into smaller, more manageable 

components i.e., the project deliverables. The project scope 

statement defines all the project deliverables. These defined 

deliverables are then clubbed together to form the Delivery 

Definition Table (DDT). The Delivery Definition Table 

contains the sequence of the delivery of the deliverables. The 

Delivery Definition Table is then used to create the Delivery 

Structure Table (DSC) which contains the work packages 

which is then further used to create the Work Breakdown 

Structure. So, WBS is similar to Bill of Materials (BOM), 



   

 
68 

Software Project  

Management 
 

 

68 

wherein a product is broken into its smallest component for 

which estimation of time and cost is possible. The idea behind 

WBS is to split each component into smaller components till it 

reaches its smallest component which is called the work 

package. The work package is the smallest component in the 

WBS that facilitates estimation of cost, schedule, resources, 

and monitoring and control. Each downward levelling in the 

WBS characterizes an increasingly thorough definition of the 

project work. Thus, WBS delivers the essential framework for 

comprehensive cost estimating, guidance for schedule 

development and control. At the top the WBS offers high-level 

deliverables each of which are then broken down into more 

detailed and well-defined deliverables known as the work 

packages. Further on these work packages are decomposed 

into activities in the project schedule. The sum of all the work 

packages comprising of activities should be equal to the 

project scope. The completion of the project scope will also 

result in the completion of the product scope. Completion of 

both scopes would mean the completion of the project. 

ii. Benefits of WBS 

Dividing complex projects to simpler and manageable tasks is 

the main purpose of developing WBS. This method is used by 

project managers to simplify project execution as smaller work 

packages and activities so that they are easier to manage. 

Following are the benefits for developing WBS in a project: 

a. WBS serves as an input to key project management 

activities, mainly, cost budgeting, resource planning, risk 

management, activity definition, and schedule planning. 

b. WBS illustrates the project scope, so that every team 

member as well as stakeholder can have a better 

understanding of it. 

c. WBS provides an accurate and readable project 

organization. 

d. WBS facilitates accurate assignment of responsibilities 

to the project team. 

e. WBS indicates the project milestones and control points. 

iii. Developing the WBS 

Project managers, project team and Subject Matter Experts 

(SME) characteristically develop a WBS as a predecessor to a 

detailed project schedule and budget estimate. Though, there 

are different methods of decomposing project work and 

creating WBS, the starting point for deriving a WBS would be 

to identify the main deliverables of the project. The next step 

would be to convene a meeting of all team members and 



 

 
69 

 

Introduction to Stepwise 
Project Planning 

subject matter experts, who would then brainstorm all the 

work required to complete project deliverables successfully. 

The participation of all team members and topic wise experts 

increases the probability of the resulting WBS being all-

inclusive. Team members and subject matter specialists 

recognizes all project deliverables and milestones and then 

break them one at a time into a detailed and chronological list 

of activities essential to complete them. It is logical to create a 

WBS based on the nature of the project work. However, this is 

possible only in projects where it is possible to identify the 

phases of project. In projects where the focus of the project 

execution is not clear, the project manager would be the best 

judge in categorizing the project components and then 

decomposing. There are no hard and fast rules to be used in 

the breakdown of the WBS. Some project managers break 

down the WBS till it is not possible to break any further. But 

generally, this method is not recommended as the tasks created 

would be too small to manage, measure, and assign. Therefore, 

for a small project the work could be broken down into a few 

days of work while for a large project, the work could be 

broken down into weeks of work. 

The universal rule is the "two weeks" rule where the task is 

broken into anything not less than two weeks of work. Another 

rule in creating the WBS is the "8/80" rule. This rule suggests 

that the smallest work package in the project should take no 

more than 80 hours to complete or no less than 8 hours to 

hours complete. of work. In short, no task should be smaller 

than 8 hours of work and should not be larger than 80. Hours 

of work. The WBS should be escorted with a WBS Dictionary, 

which lists and defines WBS elements. The WBS dictionary 

explains each work package in the WBS. The dictionary 

identifies each component of the WBS and how they are 

related to the project scope. The description of each element of 

the WBS is stated in simple language so that everyone can 

understand. The WBS dictionary contains the following : 

(i) Code of accounts 

(ii) Description of the task 

(iii) Person responsible for the task 

(iv) Task dependencies 

(v) Schedule of the task 

(vi) Resources required for the task 

(vii) Cost to create the task 

(viii) Quality requirement of the task 

(ix) Technical details of the task 

(x) Acceptance criteria of the task] 

(xi) Contract information 



   

 
70 

Software Project  

Management 
 

 

70 

WBS and WBS dictionary are not the Schedule but the 

building blocks for the schedule, they are not static documents 

and are subjected to changes as one gathers more information 

related to project.  

iv)     Project Activities 

Generally, it is seen that the top level of the WBS offers high 

level of deliverables where each of them are decomposed into 

detailed and well-defined deliverables known as work 

packages. These work packages are further decomposed to 

form activities in the project schedule. Activities or tasks are 

the key input of the project schedule. A list of all the activities 

to be included in the project schedule is tabulated and it 

includes the activity name, the activity code/identifier/number, 

and a brief description of the activity. On the other hand, the 

activity characteristics encompass additional schedule linked 

information approximately about each activity such as 

predecessor and successor activities, logical relationship 

between the activities, resource requirements of the project, 

constraints, dates, and assumptions related to each activity. 

The data for the preparation of the activity list and activity 

attribute is the WBS and WBS dictionary. As information on 

the requirements of various activities appears, it is updated in 

the activity attributes. So, Activity information is a necessary 

input for other processes and in activity sequencing, resource 

allocation, estimating duration, and developing the schedule. 

The project team should get the activity list and attributes 

reviewed by the project stakeholders before undertaking 

project scheduling. A milestone is a substantial occurrence in 

the life of a project. A milestone in a project is accomplished 

after the completion of various activities. Although, the 

milestone has no duration, it marks the completion of various 

activities and is considered a key event. The primary purpose 

of setting milestones is that they prove useful in setting 

schedule goals and monitoring the progress of the project 

activities. Milestones might include completion of certain 

software modules, installation of hardware, etc. Thus, 

milestone marks the completion of an important stage in the 

life of the project and the culmination of activities undertaken 

to reach that milestone. However, it should be noted that every 

project deliverable is not a milestone. A milestone is a special 

event, something which is important for the project and takes 

it closer to its final destination. The activity definition further 

defines the project scope and the activity sequencing. It also 

defines the time of the activity along with resource estimating 

and the activity duration. So, the activity will clearly define 

time and the cost of the project. These four project time 

management processes form the basis of the project schedule. 

 



 

 
71 

 

Introduction to Stepwise 
Project Planning 

3.3.5 Step 5: Estimate Effort for Each Activity: -  

In most of the tangible projects or products, the size is the most important 

parameter used to measure the efforts required. But when it comes to 

software projects it is very difficult to measure the size accurately. 

Software professionals have been measuring the size of software 

applications by using different methods such as Source Lines of Code 

(SLOC), Function Point, Object Point, and Feature Point. By evaluating 

and estimating the size of the project, it will help in determining the 

efforts, schedule and cost of executing the project. After having sized the 

project by using any of the above methods, it is time to transform the size 

of the deliverable efforts within a comfortable schedule. The total project 

effort needs to be assigned to the schedule thus it enables the project 

manager to do a proper resource loading. Once the phase wise resource 

loading details are available, the project manager can apply the resource 

rate to each category as per the duration of the assignment. This will 

provide the project manager with the base cost of the project. To this base 

cost, the project manager should add cost of project management, 

configuration management, and other overheads to arrive at the gross cost. 

1. Effort Estimation Process 

The overall project effort is dependent on the application size and 

the productivity of the team. The application size can be calculated 

from the application specification using any one of the estimation 

methods. As for productivity, the project manager will have to 

ensure that the team members have the productivity for the 

technology platform on which the project is being developed. Every 

programming language has its own average productivity figures that 

need to be adjusted for the organizations own team. This can be 

done by using the historic project productivity data. The productivity 

of the team is based on the competence of the team members as 

programmers, their expertise with the technology to be used and the 

software development environment within the organization. 

Based on the above; Effort = Application Size x Productivity  

The effort thus obtained project is the total effort that would be 

expended for the lifecycle’s stages of the projects. But project 

management and that configuration management efforts need to be 

added to the final efforts. 

3.3.6 Step 6: Identify Activity Risks: -  

Risk is an integral part of an IT projects and therefore risk identification at 

the earliest becomes more critical. Risk identification is an iterative 

process, wherein the project manager and his team are always on the 

lookout for risk that may sneak into the project or may have already 

sneaked in. Risk identification needs to be done throughout the project 

lifecycle because as the project develops new risk is likely to originate and 

pose a threat to the project. An idealistic situation would be one in which 

all the likely risks could be identified before the execution of the project 



   

 
72 

Software Project  

Management 
 

 

72 

but the reality is that new risk originates as the project advances and hence 

the project manager and his team have to be always alert and identify the 

risk and nub them in their bud stage. They have to do the following 

1. To identify the risks are always the biggest and the toughest task in 

project management. 

2. The risk can be categorized on the basis of the size of the project and 

the software development, the risk identified is then modified. 

3. The risks which create a business impact due to the constraints 

imposed by management or the marketplace during the development 

phase till the deployment phase. 

4. As the customer played the critical role in the project development 

being the end user, the various characteristics related to the customer 

for communication are very important. 

5. The exact requirement gathering and the analysis to be done for the 

development of the project at the Software Development Life Cycle 

has to be determined to avoid the risks.  

6. Good quality tools should be used and made available for the 

developers. 

7. New advances in the area of technology and the project development 

has to be studied for a perfect time lined software development. 

8. The major risks are associated if the staff and the team are not as per 

the required project. 

A) Risk Components and Drivers 

The risk components are defined and identified on the criteria of the 

performance, support, cost and the schedule of the project : 

i. Performance Risk - If the specifications don't meet the final 

requirements of the project. 

ii. Support Risk - The support the application developer 

provides after deployment of the project 

iii. Cost Risk - To maintain the time and the cost of the project. 

iv. Schedule Risk - The schedule and the parameters of 

deliverable should be maintained. 

There are several tools available that can help the project manager in 

identifying risks. 

1) Project Documents - Project documents are the first place to 

start looking for project risks. The project scope statement, 

WBS, project plan, resource requirement, etc will help to 

identify many risks associated with the project. 



 

 
73 

 

Introduction to Stepwise 
Project Planning 

2) SWOT Analysis - it is similar to an organizational SWOT 

where the project is evaluated in terms of its strength, 

weakness, opportunities and threats. Moreover, the areas are 

identified where the project could fail to deliver its goals and 

also Analyze the areas of improvement in the project. 

3) Brainstorming – in brainstorming process is a session in 

which the project team meets together and discusses about all 

the possible areas of risk. In this session, the participants let 

loose their imagination. There are no restrictions on the 

number of risks that could be identified. Infect, the team 

members are encouraged to identify probable risk. 

4) Delphi Technique - Although brainstorming sessions do 

manage to identify the probable risks, a few participants may 

shy from identifying risks on account of personal reasons. So 

in order to overcome these limitations the Delphi Technique is 

adopted. In Delphi technique, numerous anonymous surveys 

are been conducted amongst team members to build consensus 

on risk events. 

5) Assumption analysis - Every project is based on certain 

assumptions. However, these assumptions need to be tested to 

ensure their validity. Assumptions not tested have the potential 

to become risk in the future. Therefore, these assumptions 

need to be tested, researched and the results confirmed as to 

how they would be affecting the project. An assumption log 

should form a part of the project documents. 

6) Root cause analysis - This analysis examines an effect that 

the project is experiencing and then goes to the root of the 

effect to identify its cause. All the identified risks need to be 

entered into a risk register. The risk register will contain a log 

of all the risks and its impact on the project. 

3.3.7 Step 7 : Allocate Resources: -  

For a project to be fruitful it is advantageous to distinguish in advance the 

resources that would be essential and the time when they would be 

required. Resources are required to carry out project tasks and include 

people, the capital, material, facilities, tools, and equipments. Lack of 

resources will be a constraint on the completion of the project. However, 

the biggest resource in IT Projects is People. Projects require people with 

the right qualification, experience and skill set to accomplish the project 

objectives. Depending on the nature of the project, deadline for its 

completion, and the scope of project especially WBS the project manager 

is able to identify the resource requirement for its success. The resource 

can then be mapped to the WBS to create a Resource Breakdown 

Structure. The Resource Breakdown Structure indicates the moment the 

resource would be required and the project deliverable would be creating. 

As we have seen that there are various projects dying for scarcity of 

resources in an organization. The resource breakdown structure will be 



   

 
74 

Software Project  

Management 
 

 

74 

able to utilize these resources optimally by assigning resources to project 

activities. The project schedule will have to consider the availability of 

project resources to create deliverables. In case the project sponsor has set 

a deadline even before the project is assigned to the project manager, the 

project manager should verify the resource requirement based on the 

project deadline. Projects that fail or are delayed can usually be traced to 

poor planning, insufficient resources or unrealistic deadlines. The time 

taken to complete a project depends on the number of hours a resource 

works in a week, the number of days they will be able to work, and the 

time they can allocate to this project.  

The project manager's first concern during planning is to uncover which 

skills are needed for the project, which tasks will require the most hours 

and which skills are needed to complete those tasks. It will help the project 

manager to propose assigning a resource with the right skills and the 

highest availability. In order to determine availability, we should first 

consider the resources that are present in the project in terms of percentage 

and then adjust and planned the out-of-office resource's project time. 

Availability Find the right percentage, balance to then solve adjust for the 

concurrent project demands and plan out-of-office time. To find the right 

balance to solve the resource equation, the project manager will be able to 

shorten the project's planned duration and accelerate the finish date. While 

selecting his team, the project manager may rely on multiple methods to 

assess the skills of the proposed team member. Some of the basic methods 

for selection are as follows: -  

I. Prior Experience - The project manager has worked with the team 

member on prior projects and is very well versed with the 

capabilities and shortcomings of the team member. 

II. Prior Track record - Although the team member to be recruited 

may not have directly worked with this team member but his track 

record in the organization makes him a good prospect for being a 

part of the team. 

III. Management Recommendation - Not all members are selected by 

the project manager. Some may be in the team on recommendation 

of the management. Either management may feel that they are 

suitable for the job or wants them to get the experience of working 

on the project. 

IV. Team Member Recommendation – Existing team members whom 

you fully trust may recommend others on to the team. The project 

manager might be able to hit the sponsor's initial deadline by using 

creative resource allocation, such as a trainer with development 

skills, or a desktop technician who can set up a server, when 

traditional resources aren't available and delaying isn't a practical 

option. The key to making these kinds of choices and settling on the 

most aggressive yet realistic deadline, is to communicate with the 

resources' managers. Make sure they agree to commit their people to 



 

 
75 

 

Introduction to Stepwise 
Project Planning 

the effort and hold them accountable for their active participation on 

the project team and timely completion of their assigned tasks. 

3.3.8 Step 8 -Review/Publicize Plan: -  

1. Review of Project Plan 

The planning processes and activities are used by the project team to 

successfully plan and manage the planning project. The planning 

process is the utmost serious portion of the project management 

process. The planning process group gathers information from 

various sources and develops the project management plan 

• The efforts consumed on planning should be proportional to 

the size and complexity of the project. In other words, 

larger and complex projects demand more planning efforts as 

compared to smaller and simper projects Although, the efforts 

may vary from project to project, planning is required at each 

phase of the project with more emphasises is given to the 

development of the project charter and the project plan.  

• The planning processes also identify, define and mature the 

project scope, project cost and project schedule. The planning 

process is iterative in nature and is subject to constant change 

and revision. Project planning changes as more information 

emerges, additional dependencies are discovered, new 

requirements evolve, and new risks, opportunities, 

assumptions are identified. Hence, significant changes occur 

throughout the project lifecycle making it mandatory to revisit 

the planning process and, in some cases, the initiating process 

again and again.  

• However, experience and good judgment enable the project 

team to overcome most of the difficulties during the planning 

process. Supporting processes include a basic description of 

the project scope, the deliverables, project duration, resource 

planning, activity planning, cost estimating, schedule 

estimating, organizational planning and procurement planning. 

2. Publicize Project Plan 

Perhaps one of the most critical parts of the project plan is to 

publicize the project plan i.e. to keep the people concerned with the 

project informed of the project plans and its progress. For this, the 

project manager needs to identify all the stakeholders and keep them 

informed of the plan. The requirement of information of all the 

stakeholders is different and hence distribution of it has to be also 

planned. The method of distributing, the frequency of distribution 

and the responsibilities of each person in the project team for 

distributing the information need to be chalked out. 

 



   

 
76 

Software Project  

Management 
 

 

76 

3.3.9 Step 9 & 10: Execute Plans/Lower Levels of Planning: -  

The project plans need to be executed in order to bring the project to 

reality. The project execution group is entrusted with the task of undertake 

the work defined in the project plan. The execution job includes the proper 

coordination among people and resources as well as mixing with the 

performing activities which will be in accordance with the project plan. 

This group also addresses the scope defined in the project scope statement 

and implements approved by the project manager. This group is also 

entrusted with quality 

3.4 QUESTIONS 

1. Describe the contents of Project plan 

2. Why is it essential to undertake the feasibility study? 

3. Why is project scope the most important document in project 

planning? 

4. Why is it necessary to have a contingency plan? 

5. Discuss the project scope management process  

6. Discuss project scope verification process  

7. Write short notes on 

 a. Benefits of WBS 

 b. Project Charter 

 c. Risk components and drivers  

8. What is WBS? State its benefits 

9.  State the scope and objectives of a project  

10. Outline the general approach that is considered in project planning 

3.5 REFERENCE 

• The `step wise' planning approach to software projects  IEEE Xplore 

Conference: Project Management for Software Engineers, IEE 

Colloquium by Robert Tamblyn Hughes - University of Brighton. 

• Software Project Management by Mike Cotterell, Bob Hughes 

International Thomson Computer Press, 1995. 

• Project Management for IT-Related Projects: Textbook for the 

ISEB Foundation Certificate in IS Project Management by Bob 

Hughes, Roger Ireland, Brian West, Norman Smith, David I. 

Shepherd British Computer Society, 2004  

• An Introduction to Project Planning Paperback – Import, 1 February 

2004 by Jack Gido  

• Software Project Management Edited By Mandeep Kaur 

 

 

https://www.researchgate.net/deref/http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Ffreeabs_all.jsp%3Farnumber%3D494937
https://www.researchgate.net/profile/Robert-Hughes-2
https://www.researchgate.net/institution/University-of-Brighton
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Mike+Cotterell%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Bob+Hughes%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Bob+Hughes%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Bob+Hughes%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Roger+Ireland%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Brian+West%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Norman+Smith%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22David+I.+Shepherd%22
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22David+I.+Shepherd%22
https://www.amazon.in/Jack-Gido/e/B001IXMQAA/ref=dp_byline_cont_book_1


   
77 

4 
SELECTION OF AN APPROPRIATE 

PROJECT APPROACH  
Unit Structure 

4.1 Introduction 

4.2 Build or Buy?  

 4.2.1 In- house projects 

 4.2.2 Outsourced projects 

 4.2.3 Off-the-shelf projects 

4.3 Choosing Methodologies and Technologies 

 4.3.1 Project Methodologies 

4.4  Software Processes and Process Models 

4.5  Choice of Process Models 

4.6 The Waterfall Model 

4.7  The Spiral Model 

4.8 Summary 

4.9 Reference for further reading 

4.10 Model Questions 

4.1 INTRODUCTION 

This chapter is concerned with how the characteristics of a project 

environment and the application to be delivered influence the shape of the 

plan of a project. 

4.2 BUILD OR BUY?  

There are three types of projects namely In house projects, outsourced 

projects and off-the- shelf projects. Based on user requirements one 

among the three methods can be choosen.  



   

 
78 

Software Project  

Management 
 

 

78 

 

4.2.1 In-house projects 

In inhouse projects, developers, and the users of the software in the same 

organization and often the methods to be used are dictated by 

organizational standards  

4.2.2 Outsourced projects 

In outsourced projects the developers and the users of the software in the 

different organization and the need for tailoring arises as different 

customers have different needs  

Why Outsourcing? 

Time is needed to develop the software. 

Would often require the recruitment of new technical staff to do the job. 

Usually, the new staff won’t be needed after the project is completed.  

Sometimes due to the novelty of the project there may be lack of 

executives to lead the effort. 

4.2.3 Off-the-shelf projects  

In off-the –shelf projects a ready-made software product is purchased. 

Why Buying?  

• Whether in house or outsourced, software development is still 

involved. 

• The contracting company will not have completely developed 

software readily available to the client.  

• Considerable management effort is needed by the client to establish 

and manage the contract. 



 

 
79 

 

Selection of an  

Appropriate Project  

Approach 

 Advantages of off-the-shelf (OTS) software 

• Cheaper as supplier can spread development costs over many 

customers.  

• Software already exists  

• Can be trialed by potential customer.  

• No delay while software being developed.  

• Where there have been existing users, bugs are likely to have been 

found and eradicated. 

Disadvantages of off-the-shelf software 

• Customer will have same application as everyone else so there is no 

competitive advantage. 

• Customer may need to change the way they work to fit in with OTS 

application. 

• Customer does not own the code and cannot change it.  

• Danger of over-reliance on a single supplier. 

4.3 CHOOSING METHODOLOGIES AND TECHNOLOGIES 

To achieve goals and planned results within a defined schedule and a 

budget, a manager uses a project. Regardless of which field or which 

trade, there are assortments of methodologies to help managers at every 

stage of a project from the initiation to implementation to the closure.  

A methodology is a model, which project managers employ for the design, 

planning, implementation, and achievement of their project objectives. 

There are different project management methodologies to benefit different 

projects. 

For example, there is a specific methodology, which NASA uses to build a 

space station while the Navy employs a different methodology to build 

submarines. Hence, there are different project management methodologies 

that cater to the needs of different projects spanned across different 

business domains. 

• Identify project as either objective driven or product driven 

• Analyze other project characteristics  

• Identify high level project risks  

• Consider user requirement concerning implementation 

Objective driven or product driven 

Objective-driven project 

• A project is to meet an objective. 

• The Client may have a problem and asks a specialist to recommend 

solutions. 



   

 
80 

Software Project  

Management 
 

 

80 

Product-driven project 

• A project will be to create a product. 

• The details of the product are provided by the client.  

Analyze other project characteristics  

• Will the software to be implemented a data-oriented or a process-

oriented system?  

• Will the software to be produced be a general tool or application 

specific?  

• Are there specific tools available for implementing the application?  

• Is the system knowledge-based?  

• Will the system to be produced makes heavy use of computer 

graphics? 

• Is the system to be created safety critical?  

• Is the system designed to carry out predefined services or to be 

engaging and entertaining?  

• What is the nature of the hardware/software environment in which 

the system will operate? 

Identify high-level project risks  

• The more uncertainty in the project the more the risk that the project 

will be unsuccessful.  

• Recognizing the area of uncertainty allows taking steps towards 

reducing its uncertainty 

• Uncertainty can be associated with the products, processes, or 

resources of a project. 

 Product uncertainty 

• How well are the requirements understood? 

• The users themselves could be uncertain about what the system is to 

do.  

Process uncertainty  

• For the project under consideration, the organization will use an 
approach or an application building-tool that it never used before.  

Resource uncertainty 

• The main area of resource uncertainty is the availability of the staff 
with the right ability and experience. 

• Consider User requirements Concerning Implementation  

• Imposing uniform applications and technologies throughout whole 
organization saves time and money at the end of organization.  

• A client organization often lays down standards that must be 
adopted by any contractor providing software for them. 



 

 
81 

 

Selection of an  

Appropriate Project  

Approach 

4.3.1 Project Methodologies 

Following are the most frequently used project management 
methodologies in the project management practice: 

Adaptive Project Framework 

In this methodology, the project scope is a variable. Additionally, the time 
and the cost are constants for the project. Therefore, during the project 
execution, the project scope is adjusted to get the maximum business value 
from the project. 

Agile Software Development 

Agile software development methodology is for a project that needs 
extreme agility in requirements. The key features of agile are its short-
termed delivery cycles (sprints), agile requirements, dynamic team culture, 
less restrictive project control and emphasis on real-time communication. 

Crystal Methods 

In crystal method, the project processes are given a low priority. Instead of 
the processes, this method focuses more on team communication, team 
member skills, people, and interaction. Crystal methods come under agile 
category. 

Dynamic Systems Development Model (DSDM) 

This is the successor of Rapid Application Development (RAD) 
methodology. This is also a subset of agile software development 
methodology and boasts about the training and documents support this 
methodology has. This method emphasizes more on the active user 
involvement during the project life cycle. 

Extreme Programming (XP) 

Lowering the cost of requirement changes is the main objective of extreme 
programming. XP emphasizes on fine scale feedback, continuous process, 
shared understanding, and programmer welfare. In XP, there is no detailed 
requirements specification or software architecture built. 

Feature Driven Development (FDD) 

This methodology is more focused on simple and well-defined processes, 

short iterative and feature driven delivery cycles. All the planning and 

execution in this project type take place based on the features. 

Information Technology Infrastructure Library (ITIL) 

This methodology is a collection of best practices in project management. 

ITIL covers a broad aspect of project management which starts from the 

organizational management level. 

 

 



   

 
82 

Software Project  

Management 
 

 

82 

Joint Application Development (JAD) 

Involving the client from the early stages with the project tasks is 

emphasized by this methodology. The project team and the client hold 

JAD sessions collaboratively to get the contribution from the client. These 

JAD sessions take place during the entire project life cycle. 

Lean Development (LD) 

Lean development focuses on developing change-tolerance software. In 

this method, satisfying the customer comes as the highest priority. The 

team is motivated to provide the highest value for the money paid by the 

customer. 

PRINCE2 

PRINCE2 takes a process-based approach to project management. This 

methodology is based on eight high-level processes. 

Rapid Application Development (RAD) 

This methodology focuses on developing products faster with higher 

quality. When it comes to gathering requirements, it uses the workshop 

method. Prototyping is used for getting clear requirements and re-use the 

software components to accelerate the development timelines. 

In this method, all types of internal communications are considered 

informal. 

Rational Unified Process (RUP) 

RUP tries to capture all the positive aspects of modern software 

development methodologies and offer them in one package. This is one of 

the first project management methodologies that suggested an iterative 

approach to software development. 

Scrum 

This is an agile methodology. The main goal of this methodology is to 

improve team productivity dramatically by removing every possible 

burden. Scrum projects are managed by a Scrum master. 

Spiral 

Spiral methodology is the extended waterfall model with prototyping. This 

method is used instead of using the waterfall model for large projects. 

Systems Development Life Cycle (SDLC) 

This is a conceptual model used in software development projects. In this 

method, there is a possibility of combining two or more project 

management methodologies for the best outcome. SDLC also heavily 

emphasizes on the use of documentation and has strict guidelines on it. 

 



 

 
83 

 

Selection of an  

Appropriate Project  

Approach 

Waterfall (Traditional) 

This is the legacy model for software development projects. This 

methodology has been in practice for decades before the new 

methodologies were introduced. In this model, development lifecycle has 

fixed phases and linear timelines. This model is not capable of addressing 

the challenges in the modern software development domain. 

Selecting the most suitable project management methodology could be a 

tricky task. When it comes to selecting an appropriate one, there are a few 

dozens of factors to be considered. Each project management 

methodology carries its own strengths and weaknesses.Therefore, there is 

no good or bad methodology and what you should follow is the most 

suitable one for your project management requirements. 

4.4 SOFTWARE PROCESS AND PROCESS MODELS 

Software Processes is a coherent set of activities for specifying, 

designing, implementing, and testing software systems. There are many 

different software processes, but all involve: 

• Specification – defining what the system should do. 

• Design and implementation – defining the organization of the 

system and implementing the system. 

• Validation – checking that it does what the customer wants. 

• Evolution – changing the system in response to changing customer 

needs. 

What is a software process model? 

A software process model is an abstraction of the software development 

process. A software process model is an abstract representation of a 

process that presents a description of a process from some perspective. 

The models specify the stages and order of a process. So, think of this as a 

representation of the order of activities of the process and 

the sequence in which they are performed. 

A model will define the following: 

• The tasks to be performed 

• The input and output of each task 

• The pre and post conditions for each task 

• The flow and sequence of each task 

The goal of a software process model is to provide guidance for 

controlling and coordinating the tasks to achieve the product and 

objectives as effectively as possible. 



   

 
84 

Software Project  

Management 
 

 

84 

Factors in choosing a software process 

Choosing the right software process model for your project can be 

difficult. If you know your requirements well, it will be easier to select a 

model that best matches your needs. You need to keep the following 

factors in mind when selecting your software process model: 

Project requirements 

Before choosing a model, take some time to go through the project 

requirements and clarify them alongside your organizations or team’s 

expectations. Will the user need to specify requirements in detail after 

each iterative session? Will the requirements change during the 

development process? 

Project size 

Consider the size of the project you will be working on. Larger projects 

mean bigger teams, so you’ll need more extensive and elaborate project 

management plans. 

Project complexity 

Complex projects may not have clear requirements. The requirements may 

change often, and the cost of delay is high. Ask yourself if the project 

requires constant monitoring or feedback from the client. 

Cost of delay 

Is the project highly time-bound with a huge cost of delay, or are the 

timelines flexible? 

Customer involvement 

Do you need to consult the customers during the process? Does the user 

need to participate in all phases? 

Familiarity with technology 

This involves the developers’ knowledge and experience with the project 

domain, software tools, language, and methods needed for development. 

Project resources 

This involves the amount and availability of funds, staff, and other 

resources. 

Software Process and Software Development Lifecycle(SDLC) Model 

One of the basic notions of the software development process is SDLC 

models which stand for Software Development Life Cycle models. There 

are many development life cycle models that have been developed to 

achieve different required objectives. The models specify the various 

stages of the process and the order in which they are carried out. The 

most used, popular, and important SDLC models are given below: 



 

 
85 

 

Selection of an  

Appropriate Project  

Approach 

• Waterfall model 

• V model 

• Incremental model 

• RAD model 

• Agile model 

• Iterative model 

• Spiral model 

• Prototype model 

Waterfall Model 

The waterfall model is a breakdown of project activities into linear 

sequential phases, where each phase depends on the deliverables of the 

previous one and corresponds to a specialisation of tasks. The approach is 

typical for certain areas of engineering design. 

  

V Model 

The V-model represents a development process that may be considered 

an extension of the waterfall model and is an example of the more general 

V-model. Instead of moving down in a linear way, the process steps are 

bent upwards after the coding phase, to form the typical V shape. The V-

Model demonstrates the relationships between each phase of the 

development life cycle and its associated phase of testing. The horizontal 

and vertical axes represent time or project completeness (left-to-right) and 

level of abstraction (coarsest-grain abstraction uppermost), respectively. 



   

 
86 

Software Project  

Management 
 

 

86 

 

Incremental model 

The incremental build model is a method of software development where 

the model is designed, implemented, and tested incrementally (a little 

more is added each time) until the product is finished. It involves both 

development and maintenance. The product is defined as finished when it 

satisfies all its requirements. Each iteration passes through the 

requirements, design, coding, and testing phases. And each subsequent 

release of the system adds function to the previous release until all 

designed functionally has been implemented. This model combines the 

elements of the waterfall model with the iterative philosophy of 

prototyping. 

 

 



 

 
87 

 

Selection of an  

Appropriate Project  

Approach 

Iterative Model 

An iterative life cycle model does not attempt to start with a full 

specification of requirements by first focusing on an initial, simplified set 

user feature, which then progressively gains more complexity and a 

broader set of features until the targeted system is complete. When 

adopting the iterative approach, the philosophy of incremental 

development will also often be used liberally and interchangeably. 

In other words, the iterative approach begins by specifying and 

implementing just part of the software, which can then be reviewed and 

prioritized to identify further requirements. This iterative process is then 

repeated by delivering a new version of the software for each iteration. In 

a light-weight iterative project the code may represent the major source of 

documentation of the system; however, in a critical iterative project a 

formal software specification may also be required. 

 

RAD model 

Rapid application development was a response to plan-driven waterfall 

processes, developed in the 1970s and 1980s, such as the Structured 

Systems Analysis and Design Method (SSADM). Rapid application 

development (RAD) is often referred as the adaptive software 

development. RAD is an incremental prototyping approach to software 

development that end users can produce better feedback when examining 

a live system, as opposed to working strictly with documentation. It puts 

less emphasis on planning and more emphasis on an adaptive process. 

RAD may resulted in a lower level of rejection when the application is 

placed into production, but this success most often comes at the expense 

of a dramatic overruns in project costs and schedule. RAD approach is 

especially well suited for developing software that is driven by user 

interface requirements. Thus, some GUI builders are often called rapid 

application development tools. 



   

 
88 

Software Project  

Management 
 

 

88 

 

Spiral model 

The spiral model, first described by Barry Boehm in 1986, is a risk-driven 

software development process model which was introduced for dealing 

with the shortcomings in the traditional waterfall model. A spiral model 

looks like a spiral with many loops. The exact number of loops of the 

spiral is unknown and can vary from project to project. This model 

supports risk handling, and the project is delivered in loops. Each loop of 

the spiral is called a Phase of the software development process. 

The initial phase of the spiral model in the early stages of Waterfall Life 

Cycle that is needed to develop a software product. The exact number of 

phases needed to develop the product can be varied by the project 

manager depending upon the project risks. As the project manager 

dynamically determines the number of phases, so the project manager has 

an important role to develop a product using a spiral model. 

 

 



 

 
89 

 

Selection of an  

Appropriate Project  

Approach 

Agile model 

Agile is an umbrella term for a set of methods and practices based on the 

values and principles expressed in the Agile Manifesto that is a way of 

thinking that enables teams and businesses to innovate, quickly respond 

to changing demand, while mitigating risk. Organizations can be agile 

using many of the available frameworks available such as Scrum, 

Kanban, Lean, Extreme Programming (XP) and etc. 

 

The Agile movement proposes alternatives to traditional project 

management. Agile approaches are typically used in software 

development to help businesses respond to unpredictability which refer to 

a group of software development methodologies based on iterative 

development, where requirements and solutions evolve through 

collaboration between self-organizing cross-functional teams. 

The primary goal of being Agile is empowered the development team the 

ability to create and respond to change to succeed in an uncertain and 

turbulent environment. Agile software development approach is typically 

operated in rapid and small cycles. This results in more frequent 

incremental releases with each release building on previous functionality. 

Thorough testing is done to ensure that software quality is maintained. 



   

 
90 

Software Project  

Management 
 

 

90 

 

4.5 CHOICE OF PROCESS MODELS 

'The word “process” is sometimes used to emphasize the idea of a system 

in action. To achieve an outcome, the system will have to execute one or 

more activities: this is its process. This idea can be applied to the 

development of computer-based systems where several interrelated 

activities must be undertaken to create a linal product. These activities can 

be organized in different ways, and we can call these process models. A 

major part of the planning will be the choosing of the development 

methods to be used and the slotting of these into an overall process model. 

The planner needs not only to select methods but also to specify how the 

method is to be applied. With methods such as SSADM, there is a 

considerable degree of choice about how it is to be applied: not all parts of 

SSADM are compulsory. Many student projects have the rather basic 

failing that at the planning stage they claim that. speak. SSADM is to be 

used: in the event, all that is produced are a few SSADM fragments such 

as a top-level data flow diagram and a preliminary logical data structure 

diagram. If this is all the project requires, it should be stated at the outset. 

The software process model framework is specific to the project. Thus, it 

is essential to select the software process model according to the software 

which is to be developed. The software project is considered efficient if 

the process model is selected according to the requirements. It is also 

essential to consider time and cost while choosing a process model as cost 

and/ or time constraints play an important role in software development. 

The basic characteristics required to select the process model are project 

type and associated risks, requirements of the project, and the users. 

One of the key features of selecting a process model is to understand the 

project in terms of size, complexity, funds available, and so on. In 

addition, the risks which are associated with the project should also be 

considered. Note that only a few process models emphasize risk 

assessment. Various other issues related to the project and the risks are 

listed in Table. 



 

 
91 

 

Selection of an  

Appropriate Project  

Approach 

Table Selections on the Basis of the Project Type and Associated Risks 

Project Type 

and Associated 

Risks 

Waterfall Prototype Spiral RAD Formal 

Methods 

Reliability 

requirements 

No No Yes No Yes 

Stable funds Yes Yes No Yes Yes 

Reuse 

components 

No Yes Yes Yes Yes 

Tight project 

schedule 

No Yes Yes Yes No 

Scarcity of 

resources 

No Yes Yes No No 

The most essential feature of any process model is to understand the 

requirements of the project. In case the requirements are not clearly 

defined by the user or poorly understood by the developer, the developed 

software leads to ineffective systems. Thus, the requirements of the 

software should be clearly understood before selecting any process model. 

Various other issues related to the requirements are listed in Table. 

Table Selection on the Basis of the Requirements of the Project 

Requirements of 

the Project 

Waterfall Prototype Spiral RAD Formal 

Methods 

Requirements are 

defined early in 

SDLC 

Yes No No Yes No 

Requirements are 

easily defined and 

understandable 

Yes No No Yes Yes 

Requirements are 

changed frequently 

No Yes Yes No Yes 

Requirements 

indicate a complex 

System 

No Yes Yes No No 

Software is developed for the users. Hence, the users should be consulted 

while selecting the process model. The comprehensibility of the project 

increases if users are involved in selecting the process model. It is possible 

that a user is aware of the requirements or has a rough idea of the 

requirements. It is also possible that the user wants the project to be 

developed in a sequential manner or an incremental manner (where a part 

is delivered to the user for use). Various other issues related to the user’s 

satisfaction are listed in Table. 

 



   

 
92 

Software Project  

Management 
 

 

92 

Table Selection on the Basis of the Users 

User 

Involvement 

Waterfall Prototype Spiral RAD Formal 

Methods 

Requires Limited 

User Involvement 

Yes No Yes No Yes 

User participation 

in all phases 

No Yes No Yes No 

No experience of 

participating in 

similar projects 

No Yes Yes No Yes 

4.6 WATERFALL MODEL 

Waterfall Model is a sequential model that divides software development 

into pre-defined phases. Each phase must be completed before the next 

phase can begin with no overlap between the phases. Each phase is 

designed for performing specific activity during the SDLC phase. It was 

introduced in 1970 by Winston Royce. The Waterfall Model was the first 

Process Model to be introduced. It is also referred to as a linear-

sequential life cycle model. It is very simple to understand and use.  

The waterfall Model illustrates the software development process in a 

linear sequential flow. This means that any phase in the development 

process begins only if the previous phase is complete. In this waterfall 

model, the phases do not overlap. 

 

 



 

 
93 

 

Selection of an  

Appropriate Project  

Approach 

Different Phases of Waterfall Model in Software Engineering 

Following are the different Waterfall Model phases: 

Different phases Activities performed in each stage 

Requirement 
Gathering stage 

• During this phase, detailed requirements of the 
software system to be developed are gathered 
from client 

Design Stage • Plan the programming language, for 
Example Java, PHP, .net 

• or database like Oracle, MySQL, etc. 

• Or other high-level technical details of the 
project 

Built Stage • After design stage, it is built stage, that is 
nothing but coding the software 

Test Stage • In this phase, you test the software to verify that 
it is built as per the specifications given by the 
client. 

Deployment 
stage 

• Deploy the application in the respective 
environment 

Maintenance 
stage 

• Once your system is ready to use, you may later 
require change the code as per customer request 

Advantages and Disadvantages of Waterfall Model 

Here are the popular advantages of Waterfall model in Software 

Engineering with some disadvantages: 

Advantages Dis-Advantages 

Before the next phase of development, 

each phase must be completed 

Error can be fixed only during the 

phase 

Suited for smaller projects where 

requirements are well defined 

It is not desirable for complex 

project where requirement 

changes frequently 

They should perform quality assurance 

test (Verification and Validation) 

before completing each stage 

Testing period comes quite late in 

the developmental process 

Elaborate documentation is done at 

every phase of the software’s 

development cycle 

Documentation occupies a lot of 

time of developers and testers 

Project is completely dependent on 

project team with minimum client 

intervention 

Clients valuable feedback cannot 

be included with ongoing 

development phase 

Any changes in software is made 

during the process of the development 

Small changes or errors that arise 

in the completed software may 

cause a lot of problems 

https://www.guru99.com/java-tutorial.html
https://www.guru99.com/php-tutorials.html


   

 
94 

Software Project  

Management 
 

 

94 

Examples of Waterfall Model 

In the olden days, Waterfall model was used to develop enterprise 

applications like Customer Relationship Management (CRM) systems, 

Human Resource Management Systems (HRMS), Supply Chain 

Management Systems, Inventory Management Systems, Point of Sales 

(POS) systems for Retail chains etc. 

Waterfall model was used significantly in the development of software till 

the year 2000. Even after the Agile manifesto was published in 2001, 

Waterfall model continued to be used by many organization till the last 

decade.These days most project follow Agile Methodology, some form 

of Iterative model or one of the other models depending on their project 

specific requirement. 

In the olden days, applications developed in Waterfall Model like CRM 

Systems, Supply Chain Management Systems etc would usually take a 

year or longer to develop. With the evolution of technology, there were 

cases where large scale enterprise systems were developed over a period 

of 2 to 3 years but were redundant by the time they were completed. There 

were several reasons for this. 

• By the time the applications were developed in C, C++ etc, new 

languages (relatively speaking) like Java, .Net etc would replace 

them with web-based functionality. 

• Even if the application was developed using a new technology, 

factors like more competitors entering the market, cheaper 

alternatives becoming available, better functionality using newer 

technologies, change in customers requirement etc. increase the risk 

of developing an application over several years. 

• However, there are some areas where Waterfall model was 

continued to be preferred. 

• Consider a system where human life is on the line, where a system 

failure could result in one or more deaths. 

• In some countries, such mishaps could lead to imprisonment for 

those who are accountable. 

• Consider a system where time and money were secondary 

considerations and human safety was first. 

• In such situations, Waterfall model was the preferred approach. 

• Development of Department of Defense (DOD), military and aircraft 

programs followed Waterfall model in many organizations. 

• This is because of the strict standards and requirements that have to 

be followed. 

• In such industries, the requirements are known well in advance and 

contracts are very specific about the deliverable of the project. 

http://tryqa.com/what-is-agile-manifesto-and-agile-software-development/
http://tryqa.com/what-is-agile-methodology-examples-when-to-use-it-advantages-and-disadvantages/
http://tryqa.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/


 

 
95 

 

Selection of an  

Appropriate Project  

Approach 

• DOD Agencies typically considered Waterfall model to be 

compatible with their acquisition process and rigorous oversight 

process required by the government. 

Having said that, even these industries are being disrupted using Iterative 

model and Agile methodology by organizations like Space X and others. 

Waterfall model was also used in banking, healthcare, control system for 

nuclear facilities, space shuttles etc 

When to use the waterfall model 

Every software developed is different and requires a suitable SDLC 

approach to be followed based on the internal and external factors. Some 

situations where the use of Waterfall model is most appropriate are − 

• This model is used only when the requirements are very well known, 

clear and fixed. 

• Application is not complicated and big 

• Environment is stable 

• Technology and tools used are not dynamic and is stable 

• Product definition is stable. 

• Technology is understood. 

• There are no ambiguous requirements 

• Ample resources with required expertise are available freely 

• The project is short. 

In Waterfall model, very less customer interaction is involved during the 

development of the product. Once the product is ready then only it can be 

demonstrated to the end users. Once the product is developed and if any 

failure occurs then the cost of fixing such issues is very high, because we 

need to update everything from document till the logic.In today’s world, 

Waterfall model has been replaced by other models like iterative, agile etc. 

4.7 SPIRAL MODEL  

Spiral model is one of the most important Software Development Life 

Cycle models, which provides support for Risk Handling. In its 

diagrammatic representation, it looks like a spiral with many loops. The 

exact number of loops of the spiral is unknown and can vary from 

project to project. Each loop of the spiral is called a Phase of the 

software development process. The exact number of phases needed to 

develop the product can be varied by the project manager depending 

upon the project risks. As the project manager dynamically determines 

the number of phases, so the project manager has an important role to 

develop a product using the spiral model. The Radius of the spiral at any 

point represents the expenses(cost) of the project so far, and the angular 

dimension represents the progress made so far in the current phase.  



   

 
96 

Software Project  

Management 
 

 

96 

This Spiral model is a combination of iterative development process 

model and sequential linear development model i.e., the waterfall model 

with a very high emphasis on risk analysis. It allows incremental releases 

of the product or incremental refinement through each iteration around the 

spiral. 

The risk-driven feature of the spiral model allows it to accommodate any 

mixture of a specification-oriented, prototype-oriented, simulation-

oriented, or another type of approach. An essential element of the model is 

that each period of the spiral is completed by a review that includes all the 

products developed during that cycle, including plans for the next cycle. 

The spiral model works for development as well as enhancement projects. 

The below diagram shows the different phases of the Spiral Model: – 

 

Each phase of the Spiral Model is divided into four quadrants as shown 

in the above figure. The functions of these four quadrants are discussed 

below-  

• Objectives determination and identify alternative 

solutions: Requirements are gathered from the customers and the 

objectives are identified, elaborated, and analyzed at the start of 

every phase. Then alternative solutions possible for the phase are 

proposed in this quadrant.  

• Identify and resolve Risks: During the second quadrant, all the 

possible solutions are evaluated to select the best possible solution. 

Then the risks associated with that solution are identified and the 



 

 
97 

 

Selection of an  

Appropriate Project  

Approach 

risks are resolved using the best possible strategy. At the end of 

this quadrant, the Prototype is built for the best possible solution.  

• Develop next version of the Product: During the third quadrant, 

the identified features are developed and verified through testing. 

At the end of the third quadrant, the next version of the software is 

available.  

• Review and plan for the next Phase: In the fourth quadrant, the 

Customers evaluate the so far developed version of the software. In 

the end, planning for the next phase is started.  

Steps of the spiral model 

While the phases are broken down into quadrants, each quadrant can be 

further broken down into the steps that occur within each one. The steps in 

the spiral model can be generalized as follows: 

• The new system requirements are defined in as much detail as 

possible. This usually involves interviewing several users 

representing all the external or internal users and other aspects of the 

existing system. 

• A preliminary design is created for the new system. 

• A first prototype of the new system is constructed from the 

preliminary design. This is usually a scaled-down system and 

represents an approximation of the characteristics of the final 

product. 

• A second prototype is evolved by a fourfold procedure: (1) 

evaluating the first prototype in terms of its strengths, weaknesses, 

and risks; (2) defining the requirements of the second prototype; (3) 

planning and designing the second prototype; (4) constructing and 

testing the second prototype. 

• The entire project can be aborted if the risk is deemed too great. 

Risk factors might involve development cost overruns, operating-

cost miscalculation and other factors that could result in a less-than-

satisfactory final product. 

• The existing prototype is evaluated in the same manner as was the 

previous prototype, and, if necessary, another prototype is developed 

from it according to the fourfold procedure outlined above. 

• The preceding steps are iterated until the customer is satisfied that 

the refined prototype represents the final product desired. 

• The final system is constructed, based on the refined prototype. 

• The final system is thoroughly evaluated and tested. Routine 

maintenance is carried out on a continuing basis to prevent large-

scale failures and to minimize downtime. 

 

 



   

 
98 

Software Project  

Management 
 

 

98 

Risk Handling in Spiral Model 

A risk is any adverse situation that might affect the successful 

completion of a software project. The most important feature of the 

spiral model is handling these unknown risks after the project has 

started. Such risk resolutions are easier done by developing a prototype. 

The spiral model supports copying up with risks by providing the scope 

to build a prototype at every phase of the software development.  

The Prototyping Model also supports risk handling, but the risks must be 

identified completely before the start of the development work of the 

project. But in real life project risk may occur after the development 

work starts, in that case, we cannot use the Prototyping Model. In each 

phase of the Spiral Model, the features of the product dated and 

analyzed, and the risks at that point in time are identified and are 

resolved through prototyping. Thus, this model is much more flexible 

compared to other SDLC models.  

Why is Spiral Model called Meta Model? 

The Spiral model is called a Meta-Model because it subsumes all the 

other SDLC models. For example, a single loop spiral represents 

the Iterative Waterfall Model. The spiral model incorporates the stepwise 

approach of the Classical Waterfall Model. The spiral model uses the 

approach of the Prototyping Model by building a prototype at the start 

of each phase as a risk-handling technique. Also, the spiral model can be 

considered as supporting the evolutionary model – the iterations along 

the spiral can be considered as evolutionary levels through which the 

complete system is built.  

When to use Spiral Model? 

As mentioned before, the spiral model is best used in large, expensive, and 

complicated projects. Other uses include: 

• projects in which frequent releases are necessary. 

• projects in which changes may be required at any time. 

• long term projects that are not feasible due to altered economic 

priorities. 

• medium to high-risk projects. 

• projects in which cost, and risk analysis is important. 

• projects that would benefit from the creation of a prototype; and 

• projects with unclear or complex requirements 

Spiral Model Application 

The Spiral Model is widely used in the software industry as it is in sync 

with the natural development process of any product, i.e., learning with 

maturity which involves minimum risk for the customer as well as the 



 

 
99 

 

Selection of an  

Appropriate Project  

Approach 

development firms. The following pointers explain the typical uses of a 

Spiral Model − 

• When there is a budget constraint and risk evaluation is important. 

• For medium to high-risk projects. 

• Long-term project commitment because of potential changes to 

economic priorities as the requirements change with time. 

• Customer is not sure of their requirements which is usually the case. 

• Requirements are complex and need evaluation to get clarity. 

• New product line which should be released in phases to get enough 

customer feedback. 

• Significant changes are expected in the product during the 

development cycle. 

Advantages of Spiral Model:  

Below are some advantages of the Spiral Model.  

• Risk Handling: The projects with many unknown risks that occur 

as the development proceeds, in that case, Spiral Model is the best 

development model to follow due to the risk analysis and risk 

handling at every phase.  

• Good for large projects: It is recommended to use the Spiral 

Model in large and complex projects.  

• Flexibility in Requirements: Change requests in the 

Requirements at later phase can be incorporated accurately by 

using this model.  

• Customer Satisfaction: Customer can see the development of the 

product at the early phase of the software development and thus, 

they habituated with the system by using it before completion of 

the total product.  

Disadvantages of Spiral Model:  

Below are some main disadvantages of the spiral model.  

• Complex: The Spiral Model is much more complex than other 

SDLC models.  

• Expensive: Spiral Model is not suitable for small projects as it is 

expensive.  

• Too much dependability on Risk Analysis: The successful 

completion of the project is very much dependent on Risk 

Analysis. Without very highly experienced experts, it is going to be 

a failure to develop a project using this model.  

• Difficulty in time management: As the number of phases is 

unknown at the start of the project, so time estimation is very 

difficult.  



   

 
100 

Software Project  

Management 
 

 

100 

4.8 SUMMARY 

This chapter is concerned with how the characteristics of a project 

environment and the application to be delivered influence the shape of the 

plan of a project. Introduction to most common process models and 

selection of the most appropriate of them for a project is also a part of this 

chapter. 

4.9 REFERENCE FOR FURTHER READING 

1.  https://www.slideshare.net/tumetr1/selection-of-an-appropriate-

project-approach 

2. https://slidetodoc.com/selection-of-an-appropriate-project-approach-

contents-introduction/ 

3.  https://slideplayer.com/slide/14117777/ 

4.  http://net481.yolasite.com/resources/Ch04_project_approach.pdf 

4.10 MODEL QUESTION 

1.  Explain in detail about build or buy project approach  

2.  Discuss about choosing Methodologies and Technologies in project 

approach  

3.  Explain software process models 

4.  Discuss about Waterfall Model 

5.  Discuss on The Spiral Model 

 

https://www.slideshare.net/tumetr1/selection-of-an-appropriate-project-approach
https://www.slideshare.net/tumetr1/selection-of-an-appropriate-project-approach
https://slidetodoc.com/selection-of-an-appropriate-project-approach-contents-introduction/
https://slidetodoc.com/selection-of-an-appropriate-project-approach-contents-introduction/
https://slideplayer.com/slide/14117777/


   
101 

5 
SOFTWARE PROTOTYPING  

Unit Structure 

5.0 Software Prototyping: Introduction 

5.0.1 What is software prototyping? 

5.0.2 The Advantages and Disadvantages of Software Prototyping 

5.1 Incremental Delivery 

 5.1.1 What is Incremental Model?  

 5.1.2 Characteristics of Incremental model 

 5.1.3 Advantages and Disadvantages of Incremental model 

5.2 Dynamic Systems Development Method (DSDM) 

 5.2.1 Definition of dynamic systems development method (DSDM) 

 5.2.2 Key principles of the dynamic systems development method 

 5.2.3 DSDM life cycle 

5.3 Atern Project  

 5.3.1 The Structure of an Atern Project 

 5.3.2 Atern Principles 

 5.3.3 The Roles and Responsibilities of an Atern Project 

5.4 Rapid Application Development 

 5.4.1 RAD Model - Pros and Cons 

5.5 Agile Model :Introduction 

5.5.1 Phases of Agile Model 

5.5.2 Agile Testing Methods 

 Extreme Programming (XP) 

  Scrum  

 Lean Software Development 

5.6 Managing Iterative Model 

 5.6.1 Phases of Iterative Model  

 5.6.2 When to use the Iterative Model? 

 5.6.3 Advantages (Pros) of Iterative Model 

 5.6.4 Disadvantages (Cons) of Iterative Model 

5.7 Selecting the most appropriate process model 

 5.7.1 Selection Process Parameters for a Software Life Cycle Model 

5.7.2 How to select the right SDLC 

5.8  Summary 

5.9  References for further reading 

5.10  Model question 



    

 
102 

Software Project  

Management 
 

 

102 

5.0 SOFTWARE PROTOTYPING: INTRODUCTION 

The Software Prototyping refers to building software application 

prototypes which displays the functionality of the product under 

development but may not actually hold the exact logic of the original 

software. 

Software prototyping is becoming very popular as a software development 

model, as it enables to understand customer requirements at an early stage 

of development. It helps get valuable feedback from the customer and 

helps software designers and developers understand about what exactly is 

expected from the product under development. 

5.0.1 What Is Software Prototyping? 

Software prototyping refers to the process of visualising a software 

product before it has been created. Creating software from scratch 

requires a great investment in the form of time, money, and effort. That 

is why most clients prefer to have a visual prototype developed before 

work is put into the development of the actual product. The prototype 

acts as a ‘model’ closely replicating the appearance, and sometimes the 

functionality, of the product that the client has in mind. Have you ever 

beta tested a software application? Have you played a game or used a 

program whose publishers said it wasn't quite up to par and they needed 

your opinions before developing the final product? If so, you have 

participated in one form of software prototyping. 

5.0.2 The Advantages and Disadvantages of Software Prototyping 

Are you wondering whether you should go for a prototype or tell your 

development team to get directly to the coding part? Here are a few 

upsides and downsides of prototyping that might help you make the 

smarter decision. 

Get Started Right Away 

Creating a new software application can sometimes feel like a very 

daunting task. It is impossible to think of everything you want your 

software to do. If you are not entirely sure, you don’t have to 

unnecessarily delay production. As a start, you can bounce a few ideas 

off of your software provider. Their designers can get started with a 

rough model which can then be refined gradually. 

Clearly Define Your Vision 

Do you remember the first step of prototyping in software development? 

Gathering requirements! Before they start working on the prototype, the 

developers will want to know what you want the software to do. Once 

they start with the design process, the product will start to take a more 

certain shape and form. This will solve one problem for both you and 

the developer: 



 

 
103 

 

Software  
Prototyping 

• When you see your product on-screen, you will be able to interact 

with it and see if there is anything you would want to change. Your 

idea might turn out way better than you had imagined. If not, you 

can easily let the developers know of anything that you feel is 

missing from the prototype. 

• In case the developers miss something in the initial requirement 

gathering phase, they can now be clear on everything the product is 

supposed to be.  

Communicate And Collaborate – Stay Involved! 

Prototyping software requires a lot of back-and-forth between the client 

and the developer. With the right development team, you can both 

always stay in sync. Clients are encouraged to provide their feedback to 

the design team after each iteration. The consistent communication 

between both parties also helps to manage expectations better. 

Get A Visual Guide 

This one is especially for those who like to see quick results and is 

arguably the best (read: most fun!) part about prototyping in software 

development.  While a basic prototype will probably help you make sure 

that the developers have got your ideas right, a high-fidelity prototype 

will allow you to see what your product will look like once it is 

complete. You can even interact with a high-fidelity prototype, go 

through the various screens, click on buttons, and make sure the app 

flows smoothly. 

Achieve Greater Creativity 

Considering how communication-intensive a process software 

prototyping is, it creates the chance for ideas to flow freely. Greater 

levels of collaboration, both between the client and the developers and 

amongst the development team members, allow all participants to pitch 

in and collectively solve problems. This proves particularly useful when 

trying to work out the kinks in the prototype, leading it to perfection. 

Early User Acceptance Testing 

Acquainting users with a new software application is quite a task. 

Imagine heading an organisation with hundreds of employees and 

feeling the need to switch to a new type of accounting software. When 

the new software is implemented organisation-wide, many of your 

employees might have a hard time trying to catch up with this drastic 

change. Despite extensive training sessions, some users might still face 

problems. This problem could very well be solved with the help of 

software prototyping in software engineering because it will help you 

catch any problems way before development is started on the new 

software. 

After thinking long and hard, we could come up with only two 

downsides to the software prototyping activity. 



    

 
104 

Software Project  

Management 
 

 

104 

• It will add an extra step to the software development process. 

• Over the course of this activity, you might want to add a lot more 

functionality to your app than you had originally intended. 

5.1 INCREMENTAL DELIVERY 

5.1.1 What is Incremental Model? 

Incremental Model is a process of software development where 

requirements are broken down into multiple standalone modules of 

software development cycle. Incremental development is done in steps 

from analysis design, implementation, testing/verification, maintenance. 

 

Each iteration passes through the requirements, design, coding and 

testing phases. And each subsequent release of the system adds function 

to the previous release until all designed functionality has been 

implemented. 

 

The system is put into production when the first increment is delivered. 

The first increment is often a core product where the basic requirements 

are addressed, and supplementary features are added in the next 



 

 
105 

 

Software  
Prototyping 

increments. Once the core product is analyzed by the client, there is plan 

development for the next increment. 

5.1.2 Characteristics of an Incremental model  

• System development is broken down into many mini development 

projects 

• Partial systems are successively built to produce a final total system 

• Highest priority requirement is tackled first 

• Once the requirement is developed, requirement for that increment 

are frozen 

Incremental Phases Activities performed in incremental phases 

Requirement 

Analysis 

Requirement and specification of the software are 

collected 

Design Some high-end functions are designed during this 

stage 

Code Coding of software is done during this stage 

Test Once the system is deployed, it goes through the 

testing phase 

1.1.3 Advantages and Disadvantages of Incremental Model 

Advantages Disadvantages 

The software will be generated 

quickly during the software life 

cycle 

It requires a good planning designing 

It is flexible and less expensive to 

change requirements and scope 

Problems might cause due to system 

architecture as such not all 

requirements collected up front for 

the entire software lifecycle 

Throughout the development 

stages changes can be done 

Each iteration phase is rigid and does 

not overlap each other 

This model is less costly 

compared to others 

Rectifying a problem in one unit 

requires correction in all the units and 

consumes a lot of time 

A customer can respond to each 

building 

  

Errors are easy to be identified   



    

 
106 

Software Project  

Management 
 

 

106 

5.2 DYNAMIC SYSTEMS DEVELOPMENT METHOD 

(DSDM) 

DSDM (Dynamic Systems Development Method), the longest-established 

Agile method, launched in 1995, is the only Agile method to focus on the 

management of Agile projects. Arie van Bennekum represented DSDM at 

the launch of the Agile Alliance and their Agile Manifesto in 2001. 

DSDM has mainly operated in the corporate environment where it 

consistently demonstrates its ability to successfully work within and 

complement existing corporate processes. Practicing evolutionary 

development itself DSDM's latest version (Atern) incorporates those 

improvements. 

5.2.1 Definition of dynamic systems development method (DSDM) 

Like the wider agile family of methodologies, dynamic systems 

development method is an iterative approach to software development but 

adds additional discipline and structure to the process. Central to DSDM is 

the principle that “any project must be aligned to clearly defined strategic 

goals and focus upon early delivery of real benefits  to the business’s 

advocates refer to it as a 'grown-up' version of agile for the corporate 

world. 

5.2.2 Key principles of the dynamic systems development method 

DSDM is structured around eight key principles: 

1. Focus on the business need: DSDM teams must establish a valid 

business case and ensure organizational support throughout the 

project 

2. Deliver on time: Work should be time-boxed and predictable, to 

build confidence in the development team. 

3. Collaborate: DSDM teams must involve stakeholders throughout 

the project and empower all members of the team to make decisions. 

4. Quality: To ensure high quality, the level of quality should be 

agreed with the business at the start of the project. This is enforced 

through continuous testing, review, and documentation. 

5. Build incrementally from firm foundations: Teams must do 

enough design work up front (EDUF) to ensure they know exactly 

what to build, but not too much to slow development. 

6. Developer Iteratively: Take feedback from the business and use 

this to continually improve with each development iteration. Teams 

must also recognize that details emerge as the project or product 

develops and they must respond to this. 

7. Communicate continuously and clearly: Holding daily stand-up 

sessions, encouraging informal communication, running workshops 

and building prototypes are all key DSDM tools. Communicating 



 

 
107 

 

Software  
Prototyping 

through documents is discouraged - instead, documentation must be 

lean and timely. 

8. Demonstrate control: The project manager and team leader should 

make their plans and progress visible to all and focus on successful 

delivery. 

5.2.3 DSDM life cycle 

DSDM life cycle that defines 3 different unvarying cycles, preceded by 2 

further life cycle activities: 

1. Feasibility Study: 

It establishes the essential business necessities and constraints 

related to the applying to be designed then assesses whether the 

application could be a viable candidate for the DSDM method. 

2. Business Study: 

It establishes the use and knowledge necessities that may permit the 

applying to supply business value; additionally, it is the essential 

application design and identifies the maintainability necessities for 

the applying. 

3. Functional Model Iteration: 

It produces a collection of progressive prototypes that demonstrate 

practicality for the client. (Note: All DSDM prototypes are supposed 

to evolve into the deliverable application.) The intent throughout this 

unvarying cycle is to collect further necessities by eliciting feedback 

from users as they exercise the paradigm. 

4. Design and Build Iteration: 

It revisits prototypes designed throughout useful model iteration to 

make sure that everyone has been designed during a manner that 

may alter it to supply operational business price for finish users. In 

some cases, useful model iteration and style and build iteration occur 

at the same time. 

5. Implementation 

It places the newest code increment (an “operationalized” prototype) 

into the operational surroundings. It ought to be noted that: 

•  the increment might not 100% complete or, 

•  changes are also requested because the increment is placed 

into place. In either case, DSDM development work continues 

by returning to the useful model iteration activity. 

 

 



    

 
108 

Software Project  

Management 
 

 

108 

5.3 ATERN PROJECT  

5.3.1 The Structure of an Atern Project 

Atern differs from more common agile approaches as it encompasses the 

entire project lifecycle and not just software development (where Scrum 

prevails). It incorporates project management disciplines and provides 

mechanisms to ensure that the project benefits are clear, the proposed 

solution is feasible and there are solid foundations in place before detailed 

work is started. 

There are seven phases to an Atern project: 

Phase Key Responsibilities 

Pre-project Initiation of the project, agreeing the Terms of 

Reference for the work 

Feasibility Typically, a short phase to assess the viability 

and the outline business case (justification). 

Foundations Key phase for ensuring the project is understood 

and defined well enough so that the scope can 

be baselined at a high level and the technology 

components and standards agreed before the 

development activity begins. 

Exploration Iterative development phase during which teams 

expand on the high-level requirements to 

demonstrate the functionality 

Engineering Iterative development phase where the solution 

is engineered to be deployable for release 

Deployment For each Increment (set of timeboxes) of the 

project the solution is made available. 

Post project Assesses the accrued benefits. 

The Exploration and Engineering phases are often merged, as the method 

is flexible, allowing them to be organized to best suit the situation.  

5.3.2 Atern Principles 

Many organisations guide general behaviour with high-level values and 

culture. Well-understood principles are better guides than detailed process 

procedures. In Atern principles are used to provide guidance throughout 

the project. 



 

 
109 

 

Software  
Prototyping 

Atern has eight underlying principles, and the complete framework can be 

directly derived from these. The principles are based on best practice in its 

truest sense. They define "the way things are done". Breaking one of these 

principles can lead to failure, as these are the basic building blocks for 

Atern, and bind together all the other elements of Atern. 

Principal Description 

Focus on the Business 

Need 

Deliver what the business needs when it needs 

it. The true business priorities must be 

understood with a sound business case. 

Deliver on Time Timeboxes are planned and the timeframe set. 

The dates never change; features are varied 

depending on business priorities, to achieve the 

deadline. 

Collaborate Teams work in a spirit of active co-operation 

and commitment. Collaboration encourages 

understanding, speed and shared ownership. The 

teams must be empowered and include the 

business representatives. 

Never Compromise on 

Quality 

A solution must be "good enough". The level of 

quality is set at the outset. Projects must test 

early and continuously and review constantly. 

Build Incrementally 

from Firm Foundations 

Increments allow the business to take advantage 

of work before the final product is complete, 

encouraging stakeholder confidence and 

feedback. This is based on doing just enough 

upfront analysis to proceed and accepting that 

detail emerges later. 

Develop Iteratively Accept that work is not always right first time. 

Use Timeboxes to allow for change yet 

continuously confirm that the solution is the 

right one. 

Communicate 

Continuously and 

Clearly 

Use facilitated workshops, daily standups, 

modeling, prototyping, presentations and 

encourage informal face-to-face 

communication. 

Demonstrate Control The team needs to be proactive when 

monitoring and controlling progress in line with 

Foundations Phase. They need to constantly 

evaluate the project viability based on the 

business objectives. 

 



    

 
110 

Software Project  

Management 
 

 

110 

5.3.3 The Roles and Responsibilities of an Atern Project 

Atern defines the roles and responsibilities in such a way that it easy to 

imagine how existing roles and positions would fit into an Atern project. 

Project Roles 

Role Key Responsibilities 

Business 

Sponsor 

Owns the business case. Ensures funding and resourcing. 

Guarantees effective decision-making and deals with 

escalations rapidly. 

Project 

Manager 

Entry point for project governance. High-level planning. 

Monitors progress, resource availability, project 

configuration, manages risk and escalated issues. 

Business 

Visionary 

Owns the business vision and impact on wider business 

changes. Monitors progress against the vision. Contributes 

to key requirements, design and review sessions. 

Technical 

Coordinator 

Agrees and controls technical architecture. Advises and co-

ordinates teams. Identifies and manages technical risk. 

Ensures non-functional requirements are met. 

Solution Development Roles 

Role Key Responsibilities 

Team 

Leader 

Focuses team to deliver on time. Encourages full team 

participation. Manages detailed time box activities and day-

to-day activities. Ensures testing and review activities are 

scheduled and completed. 

Business 

Ambassador 

Contributes to all requirements, design, and review 

sessions. Provides the business view for all day-to-day 

decision making. Describes business scenarios to help 

design and test the solution. Provides assurance that the 

solution is correct. Coordinates business acceptance. 

Solution 

Developer 

Creates the solution and participates fully in all appropriate 

QA activities. 

Solution 

Tester 

Works with business roles to define test scenarios for the 

solution. Carries out full technical testing reporting results 

to the Team Leader and Technical Coordinator. 

Business 

Analyst 

Supports communication between business and technical 

members of the team. Manages all required products related 

to business requirements. Ensures business implications of 

day-to-day decisions are properly thought through. 

Business 

Advisor 

Provides specialist input, for example an accountant or a 

tax advisor. Usually an intended user of the solution. 



 

 
111 

 

Software  
Prototyping 

Other Roles 

Role Key Responsibilities 

Atern Coach Helps teams new to Atern teams get the most out 

of Atern. Tailors Atern for the needs of the 

project. Not all aspects are needed all the time! 

Workshop Facilitator Manages and organizes workshops. Responsible 

for the context not the content. Independent. 

Other Specialists Experts required on a short-term basis, possibly 

technical e.g., Load-Test specialists etc. 

5.4 Rapid Application Development 

The RAD (Rapid Application Development) model is based on 

prototyping and iterative development with no specific planning involved. 

The process of writing the software itself involves the planning required 

for developing the product. 

Rapid Application Development focuses on gathering customer 

requirements through workshops or focus groups, early testing of the 

prototypes by the customer using iterative concept, reuse of the existing 

prototypes (components), continuous integration and rapid delivery. 

5.4.1  RAD Model - Pros and Cons 

RAD model enables rapid delivery as it reduces the overall development 

time due to the reusability of the components and parallel development. 

RAD works well only if high skilled engineers are available and the 

customer is also committed to achieve the targeted prototype in the given 

time frame. If there is commitment lacking on either side the model may 

fail. 

The advantages of the RAD Model are as follows − 

• Changing requirements can be accommodated. 

• Progress can be measured. 

• Iteration time can be short with use of powerful RAD tools. 

• Productivity with fewer people in a short time. 

• Reduced development time. 

• Increases reusability of components. 

• Quick initial reviews occur. 

• Encourages customer feedback. 

• Integration from very beginning solves a lot of integration issues. 

The disadvantages of the RAD Model are as follows − 

• Dependency on technically strong team members for identifying 

business requirements. 



    

 
112 

Software Project  

Management 
 

 

112 

• Only system that can be modularized can be built using RAD. 

• Requires highly skilled developers/designers. 

• High dependency on Modelling skills. 

• Inapplicable to cheaper projects as cost of Modelling and automated 

code generation is very high. 

• Management complexity is more. 

• Suitable for systems that are component based and scalable. 

• Requires user involvement throughout the life cycle. 

• Suitable for project requiring shorter development times. 

5.5 AGILE MODEL: INTRODUCTION 

Agile SDLC model is a combination of iterative and incremental process 

models with focus on process adaptability and customer satisfaction by 

rapid delivery of working software product. Agile Methods break the 

product into small incremental builds. These builds are provided in 

iterations. Each iteration typically lasts from about one to three weeks. 

Every iteration involves cross functional teams working simultaneously on 

various areas like − 

• Planning 

• Requirements Analysis 

• Design 

• Coding 

• Unit Testing and 

• Acceptance Testing. 

At the end of the iteration, a working product is displayed to the customer 

and important stakeholders. 

5.5.1 Phases of Agile Model 

Following are the phases in the Agile model are as follows: 

1. Requirements gathering 

2. Design the requirements 

3. Construction/ iteration 

4. Testing/ Quality assurance 

5. Deployment 

6. Feedback 

1.  Requirements gathering: In this phase, you must define the 

requirements. You should explain business opportunities and plan 

the time and effort needed to build the project. Based on this 

information, you can evaluate technical and economic feasibility. 



 

 
113 

 

Software  
Prototyping 

2.  Design the requirements: When you have identified the project, 

work with stakeholders to define requirements. You can use the user 

flow diagram or the high-level UML diagram to show the work of 

new features and show how it will apply to your existing system. 

3.  Construction/ iteration: When the team defines the requirements, 

the work begins. Designers and developers start working on their 

project, which aims to deploy a working product. The product will 

undergo various stages of improvement, so it includes simple, 

minimal functionality. 

4.  Testing: In this phase, the Quality Assurance team examines the 

product's performance and looks for the bug. 

5.  Deployment: In this phase, the team issues a product for the user's 

work environment. 

6.  Feedback: After releasing the product, the last step is feedback. In 

this, the team receives feedback about the product and works 

through the feedback. 

5.5.2 Agile Testing Methods 

• Extreme Programming(XP) 

• Scrum 

• Lean Software Development 

• Crystal 

• Dynamic Software Development Method(DSDM) 

• Feature Driven Development(FDD) 

Extreme Programming(XP) 

Extreme Programming (XP) is one of the numerous Agile frameworks 

applied by IT companies. But its key feature — emphasis on technical 

aspects of software development — distinguishes XP from the other 

approaches. 

Software engineer Ken Beck introduced XP in the 90s with the goal of 

finding ways to write high-qualitative software quickly and being able to 

adapt to customers’ changing requirements. XP is a set of engineering 

practices. Developers have to go beyond their capabilities while 

performing these practices. That’s where the “extreme” in the 

framework’s title comes from. To get a better understanding of these 

practices, we’ll start with describing XP’s lifecycle and the roles engaged 

in the process. 

The process and roles of extreme programming 

The XP framework normally involves 5 phases or stages of the 

development process that iterate continuously: 



    

 
114 

Software Project  

Management 
 

 

114 

1. Planning, the first stage, is when the customer meets the 
development team and presents the requirements in the form of user 
stories to describe the desired result. The team then estimates the 
stories and creates a release plan broken down into iterations needed 
to cover the required functionality part after part. If one or more of 
the stories can’t be estimated, so-called spikes can be introduced 
which means that further research is needed. 

2.  Designing is a part of the planning process but can be set apart to 
emphasize its importance. It’s related to one of the main XP values 
that we’ll discuss below — simplicity. A good design brings logic 
and structure to the system and allows to avoid unnecessary 
complexities and redundancies. 

3. Coding is the phase during which the actual code is created by 
implementing specific XP practices such as coding standards, pair 
programming, continuous integration, and collective code ownership 
(the entire list is described below). 

4. Testing is the core of extreme programming. It is the regular activity 
that involves both unit tests (automated testing to determine if the 
developed feature works properly) and acceptance tests (customer 
testing to verify that the overall system is created according to the 
initial requirements). 

5. Listening is all about constant communication and feedback. The 
customers and project managers are involved to describe the 
business logic and value that is expected. 

Development process entails the cooperation between several participants, 
each having his or her own tasks and responsibilities. Extreme 
programming puts people in the center of the system, emphasizing the 
value and importance of such social skills as communication, cooperation, 
responsiveness, and feedback. So, these roles are commonly associated 
with XP: 

1. Customers are expected to be heavily engaged in the development 
process by creating user stories, providing continuous feedback, and 
making all the necessary business decisions related to the project. 

2. Programmers or developers are the team members that create the 
product. They are responsible for implementing user stories and 
conducting user tests (sometimes a separate Tester role is set apart). 
Since XP is usually associated with cross-functional teams, the skill 
set of such members can be different. 

3. Trackers or managers link customers and developers. It’s not a 
required role and can be performed by one of the developers. These 
people organize the meetups, regulate discussions, and keep track of 
important progress KPIs. 

4. Coaches can be included in the teams as mentors to help with 
understanding the XP practices. It’s usually an outside assistant or 
external consultant who is not involved in the development process 
but has used XP before and so can help avoid mistakes. 



 

 
115 

 

Software  
Prototyping 

Extreme programming practices 

The practices of XP are a set of specific rules and methods that 

distinguishes it from other methodologies. When used in conjunction, they 

reinforce each other, help mitigate the risks of the development process, 

and lead to the expected high-quality result. XP suggests using 12 

practices while developing software which can be clustered into four 

groups. 

 

XP main practices 

Test-Driven Development 

Is it possible to write a clear code quickly? The answer is yes, according to 

XP practitioners. The quality of software derives from short development 

cycles that, in turn, allow for receiving frequent feedback. And valuable 

feedback comes from good testing. XP teams practice test-driven 

development technique (TDD) that entails writing an automated unit test 

before the code itself. According to this approach, every piece of code 

must pass the test to be released. So, software engineers thereby focus on 

writing code that can accomplish the needed function. That’s the way 

TDD allows programmers to use immediate feedback to produce reliable 

software. You can learn more about improving software testing in our 

dedicated article. 

The Planning Game 

This is a meeting that occurs at the beginning of an iteration cycle. The 

development team and the customer get together to discuss and approve a 

product’s features. At the end of the planning game, developers plan for 

the upcoming iteration and release, assigning tasks for each of them. 

On-site Customer 

As we already mentioned, according to XP, the end customer should fully 

participate in development. The customer should be present all the time to 

answer team questions, set priorities, and resolve disputes if necessary. 

 



    

 
116 

Software Project  

Management 
 

 

116 

Pair Programming 

This practice requires two programmers to work jointly on the same code. 

While the first developer focuses on writing, the other one reviews code, 

suggests improvements, and fixes mistakes along the way. Such teamwork 

results in high-quality software and faster knowledge sharing but takes 

about 15 percent more time. In this regard, it’s more reasonable trying pair 

programming for long-term projects. 

Code Refactoring 

To deliver business value with well-designed software in every short 

iteration XP teams also use refactoring. The goal of this technique is to 

continuously improve code. Refactoring is about removing redundancy, 

eliminating unnecessary functions, increasing code coherency, and at the 

same time decoupling elements. Keep your code clean and simple, so you 

can easily understand and modify it when required would be the advice of 

any XP team member. 

Continuous Integration 

Developers always keep the system fully integrated. XP teams take 

iterative development to another level because they commit code multiple 

times a day, which is also called continuous delivery. XP practitioners 

understand the importance of communication. Programmers discuss which 

parts of the code can be re-used or shared. This way, they know exactly 

what functionality they need to develop. The policy of shared code helps 

eliminate integration problems. In addition, automated testing allows 

developers to detect and fix errors before deployment. 

Small Releases 

This practice suggests releasing the MVP quickly and further developing 

the product by making small and incremental updates. Small releases 

allow developers to frequently receive feedback, detect bugs early, and 

monitor how the product works in production. One of the methods of 

doing so is the continuous integration practice (CI) we mentioned before. 

Simple Design 

The best design for software is the simplest one that works. If any 

complexity is found, it should be removed. The right design should pass 

all tests, have no duplicate code, and contain the fewest possible methods 

and classes. It should also clearly reflect the programmer’s intent. 

XP practitioners highlight those chances to simplify design are higher after 

the product has been in production for some time. Don Wells advises 

writing code for those features you plan to implement right away rather 

than writing it in advance for other future features: “The best approach is 

to create code only for the features you are implementing while you search 

for enough knowledge to reveal the simplest design. Then refactor 

incrementally to implement your new understanding and design.” 



 

 
117 

 

Software  
Prototyping 

Coding Standards 

A team must have common sets of coding practices, using the same 

formats and styles for code writing. Application of standards allows all 

team members to read, share, and refactor code with ease, track who 

worked on certain pieces of code, as well as make the learning faster for 

other programmers. Code written according to the same rules encourages 

collective ownership. 

Collective Code Ownership 

This practice declares a whole team’s responsibility for the design of a 

system. Each team member can review and update code. Developers that 

have access to code won’t get into a situation in which they don’t know 

the right place to add a new feature. The practice helps avoid code 

duplication. The implementation of collective code ownership encourages 

the team to cooperate more and feel free to bring new ideas. 

System Metaphor 

System metaphor stands for a simple design that has a set of certain 

qualities. First, a design and its structure must be understandable to new 

people. They should be able to start working on it without spending too 

much time examining specifications. Second, the naming of classes and 

methods should be coherent. Developers should aim at naming an object 

as if it already existed, which makes the overall system design 

understandable. 

40-Hour Week 

XP projects require developers to work fast, be efficient, and sustain the 

product’s quality. To adhere to these requirements, they should feel well 

and rested. Keeping the work-life balance prevents professionals from 

burnout. In XP, the optimal number of work hours must not exceed 45 

hours a week. One overtime a week is possible only if there will be none 

the week after. 

Advantages and disadvantages of XP 

XP practices have been debated upon for decades, as its approach and 

methods are rather controversial in a number of aspects and can’t be 

applied in just any project. Here, we’ll try to define the pros and cons of 

XP methodology. 



    

 
118 

Software Project  

Management 
 

 

118 

 

XP pros and cons in a nutshell 

Comparison of XP to other frameworks 

As we mentioned above, XP is part of the agile methodology. It shares the 

main agile principles, i.e., frequent releases, short development cycles, 

constant communication with the customer, cross-functional teams, and so 

on. For this reason, XP is often confused with other popular Agile 

frameworks such as Scrum, Kanban, and Lean. Check our detailed 

whitepaper to get more in-depth information or the infographics for a 

quick summary of the main agile methods. Here, we’ll briefly compare 

them and see what the main differences are. 

But before we dive in, it’s important to note that XP is not really a project 

management framework, even though a lot of its practices overlap with 

those from the project management domain. So, its primary focus is on the 

technical aspects of development and the implementation of specific 

practices rather than the management and organizational sides. 

 

https://www.altexsoft.com/media/2018/02/XP-advantages-and-disadvantages.png
https://www.altexsoft.com/media/2018/02/XP-vs-other-frameworks.png


 

 
119 

 

Software  
Prototyping 

 

XP vs Scrum and Lean in a nutshell 

Extreme programming vs Scrum 

Scrum is commonly associated with self-organizing teams. It also usually 
has sprints that are 2 to 4 weeks long, while XP iterations are shorter, 
taking 1 to 2 weeks. Besides, XP is much more flexible with possible 
changes within iterations, while Scrum doesn’t allow any modifications 
after the sprint backlog is set. Another difference is that in XP the 
customer prioritizes features and decides on the order of their 
development, but in Scrum the team itself determines what to work on 
first. 

Scrum’s main roles are Product Owner, Scrum Master, and Scrum Team, 
which are different from those in XP. 

However, there is no need to choose between XP and Scrum. 
Incorporating XP practices and Scrum techniques is considered quite 
effective with XP focusing on engineering aspects and Scrum organizing 
the process. 

Extreme programming vs Lean 

It’s hard to compare XP and Lean because the latter is more of a 
philosophy or approach to the development process and bringing value to 
the customer. Its core principles include eliminating waste, deciding as 
late as possible, delivering as early as possible, and so on. So, Lean’s 
focus is not on time-boxed iterations or specific engineering practices as in 
XP, but largely on a fast MVP delivery and reducing time waste. 

Scrum 

SCRUM is an agile development process focused primarily on ways to 
manage tasks in team-based development conditions. 

There are three roles in it, and their responsibilities are: 

• Scrum Master: The scrum can set up the master team, arrange the 
meeting and remove obstacles for the process 

• Product owner: The product owner makes the product backlog, 
prioritizes the delay and is responsible for the distribution of 
functionality on each repetition. 

https://www.altexsoft.com/media/2018/02/XP-vs-other-frameworks.png


    

 
120 

Software Project  

Management 
 

 

120 

• Scrum Team: The team manages its work and organizes the work 

to complete the sprint or cycle. 

What is Lean Software Development (LSD)? 

Lean Software Development (LSD) is an agile framework based on 

optimizing development time and resources, eliminating waste, and 

ultimately delivering only what the product needs. The Lean approach is 

also often referred to as the Minimum Viable Product (MVP) strategy, in 

which a team releases a bare-minimum version of its product to the 

market, learns from users what they like, don’t like and want to be added, 

and then iterates based on this feedback. 

Advantages of LSD  

LSD has proved to improve software development in following ways :  

1. LSD removes the unnecessary process stages when designing a 

software so that it acta as a time saver as simplifies the 

development process. 

2. With focus on MVP, Lean Software Development prioritizes 

essential functions so this removes the risk of spending time on 

valueless builds. 

3. It increases involvement power of your team as more and more 

members participate due to which the overall workflow becomes 

optimized, and losses gets reduced. 

Key Principles of Lean Software Development  

There are 7 established lean principles which comes with a set of 

tactics, practices and processes that builds more efficient software 

products : 

Eliminating Waste 

Waste reduction, being the first rule in Lean engineering, defines its entire 

purpose. For the most part, the methodology tries to fight these 9 types of 

waste. 

• Unnecessary features and code 

• More tasks in log than can be completed 

• Delays in the engineering process 

• Vague requirements 

• Inefficient communication 

• Issues with quality 

• Unneeded and crippling bureaucracy 

• Data duplications 

https://www.productplan.com/glossary/agile-framework/
https://www.productplan.com/glossary/minimum-viable-product/


 

 
121 

 

Software  
Prototyping 

1.  Costs of aforementioned 

To identify and eliminate waste, regular meetings are held by Project 

Managers after each short iteration. They allow team members to 

report progress, point out bottlenecks and suggest which changes to 

implement during next iterations, which facilitates learning and 

allows improvements to the code to be implemented in small, 

manageable increments. 

2.  Building Quality In 

Efficient quality management is, too, a guiding principle in lean 

development methodology, as issues in this area lead to different 

types of waste. Repetitive testing of the code, mistakes in logging 

and their resolvement take time and therefore drive costs of 

development higher; lean strives to address such nuances before they 

even happen. 

Various tactics are used in lean, and all related agile development 

types, to ensure that quality is maintained all along the process. 

Engineering is kept flexible. Every small iteration, each loop is 

followed by an immediate assessment. The time between software 

development stages is always reduced as much as possible and 

trade-offs (occasional sacrifices of qualify for other project 

dimensions – time, costs and scope) are regularly discussed and 

considered. 

Additionally, to fix bugs before the fact either Pair Programming or 

Test-Driven Development can be applied. 

Pair Programming is the application of “two heads better than one” 

principle to software engineering. Each task is being completed by 

two developers, combined experience of which allows to figure out 

more effective solutions, foresee possible issues better and deliver 

higher quality than one of them would, singly. 

Test-driven programming turns conventional “build, then scrutinize” 

approach upside down. Tests are written before the code is, so that 

an engineer, knowing precisely how features’ conditions are going 

to be checked, works out all probable scenarios whilst developing. 

3.  Amplifying knowledge 

Lean software development originated from lean manufacturing, 

where the ultimate goal had always been a simplified, standardized, 

pipeline production which requires no knowledge and rare 

modifications. Therefore, when lean’s concept “amplify learning” 

was introduced to physical business, it was a game changer. 

In software engineering, however, the importance of learning was 

never in doubt and lean development methodology, perhaps, only 

proven it once more. Each time the code is written, engineers reflect 

on it immediately and then incorporate, during following iterations, 



    

 
122 

Software Project  

Management 
 

 

122 

the lessons they have learned. That’s true of lean and all agile 

methodologies. To ensure that knowledge isn’t accumulated 

exclusively by one engineer, who’s writing a particular piece of 

code, lean methodology often uses paired programming. 

Besides that, learning is amplified through ample code reviewing, 

meetings and establishment of metrics from data that are cross-team 

applicable. You, as a client, get to voice your feedback to the 

development team upon each iteration; collecting it and adjusting 

future efforts to your requirements is paramount to all lean 

developers. 

4. Delaying commitment 

 It happens or rather used to happen often in traditional project 

management, that your application, though meeting the spec 

precisely, turned out completely unfit for the market by the date of 

release. Too many changes had emerged since your requests – in the 

business environment, in technologies your competitors use and in 

market’s course overall; changes that had not been addressed over 

the course of development. 

 Lean software development methodology recognizes this threat. It 

always leaves room for improvement by postponing irreversible 

decisions until all the needed experimentation is done and as much 

info as possible is gathered; until you’ve checked and examined 

your requirements comprehensively and there are no doubts as to 

their relevance. 

 The methodology strives always to construct software to be flexible, 

so that when new knowledge is made available, engineers can act 

upon it without wrecking completely what’s been done earlier. As 

all new projects, nowadays, are bound to face uncertainty, so the 

importance of this is hard to overestimate. 

5.  Delivering fast 

Historically, meticulous, and long-term planning used to be the key 

to success in business. Only when each aspect of your strategy had 

been worked out thoroughly, agreed upon, strict milestones and pace 

of development had been established, you were considered ready to 

enter the software market. 

As practice showed, however, such approach often led to a 

catastrophe. It made engineers spend too much time on building 

complex, monolithic systems packed with unneeded features. It 

restrained them from adapting the software to the ever-changing 

environment and client requirements. 

As a result, lean engineers came up with the concept of MVP 

(minimum viable product) and overall opposite philosophy: build 



 

 
123 

 

Software  
Prototyping 

quickly, include little functionality, and launch a product to the 

market as fast as possible. Then, study the reaction. 

Such approach allows to enhance a piece of software incrementally, 

based on the feedback collected from real customers, and ditch 

everything that is of no value. 

6.  Respecting the team 

Lean software development is a system aimed at empowering team 

members, rather than controlling them. It goes beyond establishing 

basic human courtesy; it instills trust within each project. Engineers 

are granted freedom to make important development decisions, 

based on knowledge they receive whilst writing code and their own 

judgment. Providing, of course, that they’re experienced enough to 

do so. 

Such approach contributes a lot to a faster application of changes to 

software that are needed to reflect the changes in the environment, 

and it keeps your developers motivated. 

And what’s more important than team’s motivation? 

Setting up a collaborative atmosphere, however, and keeping the 

perfect balance of control within the project is hard. Developers 

should be let to do their thing, implement changes that they feel are 

necessary, but they’re also ought to report on their decisions; to 

explain the approach, they intend to take to managers and, more 

importantly, to you – the client. In the end, it’s you who are in 

charge of the overall course. 

7.  Optimizing the entire value stream 

According to Mary and Tom Poppedniecks, sub-optimizing is one of 

those unfortunate tendencies that, though being unproductive, still 

occurs often in traditional IT departments. Managers choose to break 

each issue into multiple constituent parts, which they then have their 

teams fix separately, without optimizing entire systems. Lean 

software development opposes that and stands for focusing on value 

stream. 

At Perfection, for instance, we find people that are best suitable for 

each specific project and organize them into complete, standalone 

teams. That way, there aren’t delays, disruptions, and 

miscommunications that would happen, surely, if project members 

were scattered across various departments. 

Lean principles allow to optimize team’s workflow, create unity 

among everyone involved in the project, inspire a sense of shared 

responsibility and shared objectives, which translates into higher 

performance. 

 



    

 
124 

Software Project  

Management 
 

 

124 

Weakness in LSD : 

• Make it scalable as other frameworks since it strongly depends on 

team involved. 

• It is hard to keep with pace so it is not easy for developers to 

work with team members as conflict may occur in between them. 

• It leads to difficult decision-making process as it is mandatory for 

customers to clearly set their requirements for the development 

not to be interrupted. 

Lean Software Development is one of the proactive approaches that 

drives your body through productivity and cleanliness. It closely 

connects to Agile methodology, knowledge-sharing experience, fast 

product delivery. All processes and stags of development are accurately 

built to deliver the product at minimum cost in a timely manner. 

5.6 MANAGING ITERATIVE MODEL 

In this Model, you can start with some of the software specifications and 

develop the first version of the software. After the first version if there is a 

need to change the software, then a new version of the software is created 

with a new iteration. Every release of the Iterative Model finishes in an 

exact and fixed period that is called iteration. 

The Iterative Model allows the accessing earlier phases, in which the 

variations made respectively. The final output of the project renewed at 

the end of the Software Development Life Cycle (SDLC) process. 

 

 



 

 
125 

 

Software  
Prototyping 

5.6.1 Phases of Iterative Model  

Requirement gathering & analysis: In this phase, requirements are 

gathered from customers and check by an analyst whether requirements 

will fulfil or not. Analyst checks that need will achieve within budget or 

not. After all of this, the software team skips to the next phase. 

Design: In the design phase, team design the software by the different 

diagrams like Data Flow diagram, activity diagram, class diagram, state 

transition diagram, etc. 

Implementation: In the implementation, requirements are written in the 

coding language and transformed into computer programmes which are 

called Software. 

Testing: After completing the coding phase, software testing starts using 
different test methods. There are many test methods, but the most common 
are white box, black box, and grey box test methods. 

Deployment: After completing all the phases, software is deployed to its 
work environment. 

Review: In this phase, after the product deployment, review phase is 
performed to check the behaviour and validity of the developed product. 
And if there are any error found then the process starts again from the 
requirement gathering. 

Maintenance: In the maintenance phase, after deployment of the software 
in the working environment there may be some bugs, some errors or new 
updates are required. Maintenance involves debugging and new addition 
options. 

5.6.2 When to use the Iterative Model? 

1. When requirements are defined clearly and easy to understand. 

2. When the software application is large. 

3. When there is a requirement of changes in future. 

5.6.3 Advantages (Pros) of Iterative Model 

1. Testing and debugging during smaller iteration is easy. 

2. A Parallel development can plan. 

3. It is easily acceptable to ever-changing needs of the project. 

4. Risks are identified and resolved during iteration. 

5. Limited time spent on documentation and extra time on designing. 

5.6.4 Disadvantages (Cons) of Iterative Model 

1. It is not suitable for smaller projects. 

2. More Resources may be required. 



    

 
126 

Software Project  

Management 
 

 

126 

3. Design can be changed again and again because of imperfect 
requirements. 

4. Requirement changes can cause over budget. 

5. Project completion date not confirmed because of changing 
requirements. 

5.7 SELECTING THE MOST APPROPRIATE 

PROCESS MODEL 

Selecting a Software Development Life Cycle (SDLC) methodology is a 
challenging task for many organizations and software engineers. What 
tends to make it challenging is the fact that few organizations know what 
the criteria are to use in selecting a methodology to add value to the 
organization. Fewer still understand that a methodology might apply to 
more than one Life Cycle Model. Before considering a framework for 
selecting a given SDLC methodology, we need to define the different 
types and illustrate the advantages and disadvantages of those models 
(please see the Software Development Life Cycle Models and 
Methodologies). 

5.7.1 Selection Process Parameters for a Software Life Cycle Model 

Selection Process parameters plays an important role in software 
development as it helps to choose the best suitable software life cycle 
model. Following are the parameters which should be used to select a 
SDLC. 

 Requirements characteristics : 

• Reliability of Requirements 

• How often the requirements can change 

• Types of requirements 

• Number of requirements 

• Can the requirements be defined at an early stage 

• Requirements indicate the complexity of the system 

Development team : 

• Team size 

• Experience of developers on similar type of projects 

• Level of understanding of user requirements by the developers 

• Environment 

• Domain knowledge of developers 

• Experience on technologies to be used 

• Availability of training 

 

 



 

 
127 

 

Software  
Prototyping 

User involvement in the project : 

• Expertise of user in project 

• Involvement of user in all phases of the project 

• Experience of user in similar project in the past 

Project type and associated risk : 

• Stability of funds 

• Tightness of project schedule 

• Availability of resources 

• Type of project 

• Size of the project 

• Expected duration for the completion of project 

• Complexity of the project 

• Level and the type of associated risk 

5.7.2 How to select the right SDLC 

Selecting the right SDLC is a process that the organization can implement 

internally or consult for. There are some steps to get the right selection. 

STEP 1: Learn the about SDLC Models 

SDLCs are the same in their usage. To select the right SDLC, you should 

have enough experience and be familiar with the SDLCs that will be 

chosen and understand them correctly. As described in the software 

development life cycle models article, models are like the tools that 

important to know each tool usage to know which context it can fit into. 

Imagine the image below by Jacob Lawrence, if the carpenter did not 

know the tools he will use, what will be the results? Did you visualize the 

disaster? 

STEP 2: Assess the needs of Stakeholders 

We must study the business domain, stakeholders concerns and 

requirements, business priorities, our technical capability and ability, and 

technology constraints to be able to choose the right SDLC against their 

selection criteria. 

STEP 3: Define the criteria 

Some of the selection criteria or arguments that you may use to select an 

SDLC are: 

• Is the SDLC suitable for the size of our team and their skills? 

• Is the SDLC suitable for the selected technology we use for 

implementing the solution? 



    

 
128 

Software Project  

Management 
 

 

128 

• Is the SDLC suitable for client and stakeholders concerns and 

priorities? 

• Is the SDLC suitable for the geographical situation (distributed 

team)? 

• Is the SDLC suitable for the size and complexity of our software? 

• Is the SDLC suitable for the type of projects we do? 

• Is the SDLC suitable for our software engineering capability? 

• Is the SDLC suit;    able for the project risk and quality insurance? 

What are the criteria? 

Factors Waterfall V-

Shaped 

Evolutionary 

Prototyping 

Spiral Iterative 

and 

Incremental 

Agile 

Unclear User 

Requirement 

Poor Poor Good Excellent Good Excellent 

Unfamiliar 

Technology 

Poor Poor Excellent Excellent Good Poor 

Complex 

System 

Good Good Excellent Excellent Good Poor 

Reliable system Good Good Poor Excellent Good Good 

Short Time 

Schedule 

Poor Poor Good Poor Excellent Excellent 

Strong Project 

Management 

Excellent Excellent Excellent Excellent Excellent Excellent 

Cost limitation Poor Poor Poor Poor Excellent Excellent 

Visibility of 

Stakeholders 

Good Good Excellent Excellent Good Excellent 

Skills limitation Good Good Poor Poor Good Poor 

Documentation Excellent Excellent Good Good Excellent Poor 

Component 

reusability 

Excellent Excellent Poor Poor Excellent Poor 



 

 
129 

 

Software  
Prototyping 

STEP 4: Decide 

When you define the criteria and the arguments you need to discuss with 

the team, you will need to have a decision matrix and give each criterion a 

defined weight and score for each option. After analyzing the results, you 

should document this decision in the project artifacts and share it with the 

related stakeholders. 

STEP 5: Optimize 

You can always optimize the sdlc during the project execution, you may 

notice upcoming changes do not fit with the selected sdlc, it is okay to 

align and cope with the changes. You can even make your own sdlc model 

which optimum for your organization or the type of projects you are 

involved in. 

5.8 SUMMARY 

In Software Engineering, Prototype methodology is a software 

development model in which a prototype is built, test and then reworked 

when needed until an acceptable prototype is achieved.1) Requirements 

gathering and analysis, 2) Quick design, 3) Build a Prototype, 4) Initial 

user evaluation, 5) Refining prototype, 6)Implement Product and 

Maintain; are 6 steps of the prototyping process. Type of prototyping 

models are 1) Rapid Throwaway prototypes 2) Evolutionary prototype 3) 

Incremental prototype 4) Extreme prototype Regular meetings are 

essential to keep the project on time and avoid costly delays in prototyping 

approach. Missing functionality can be identified, which helps to reduce 

the risk of failure as Prototyping is also considered as a risk reduction 

activity in SDLC. Prototyping may encourage excessive change requests. 

5.9 REFERENCE FOR FURTHER READING 

1.  https://www.geeksforgeeks.org/software-engineering-prototyping-

model/ 

2.  https://www.tutorialspoint.com/sdlc/sdlc_software_prototyping.htm 

3. https://study.com/academy/lesson/what-is-software-prototyping-

definition-models-tools.html 

4.  https://www.guru99.com/software-engineering-prototyping-

model.html 

5.  https://t4tutorials.com/software-prototypes-software-engineering/ 

 

 

https://www.geeksforgeeks.org/software-engineering-prototyping-model/
https://www.geeksforgeeks.org/software-engineering-prototyping-model/
https://www.tutorialspoint.com/sdlc/sdlc_software_prototyping.htm
https://study.com/academy/lesson/what-is-software-prototyping-definition-models-tools.html
https://study.com/academy/lesson/what-is-software-prototyping-definition-models-tools.html
https://www.guru99.com/software-engineering-prototyping-model.html
https://www.guru99.com/software-engineering-prototyping-model.html
https://t4tutorials.com/software-prototypes-software-engineering/


    

 
130 

Software Project  

Management 
 

 

130 

5.10 MODEL QUESTION 

1.  What is software prototyping explain its Advantages and 

Disadvantages. 

2.   Discuss Incremental Model and its Characteristics? 

3.  Explain Advantages and Disadvantages of Incremental model 

4.  Explain in detail about  Key principles Dynamic Systems 

Development Method (DSDM) 

5.  Discuss about DSDM life cycle 

6.  Explain  Atern Project concepts 

7.  Discuss on RAD model? 

8.   what are the phases of agile model? 

9.  Explain Agile testing methods? 

10.  Discuss on phases of iterative model along with its pros and cons? 

11.  Discuss on the Selection Process Parameters for a Software Life 

Cycle Model? 

 



   
131 

6 
SOFTWARE EFFORT ESTIMATION  

Unit Structure 

6.0 Software Effort Estimation: Introduction  

6.1 Where are the Estimates Done?  

6.2 Problems with Over- and Under-Estimates 

6.3 Basis for Software Estimating  

6.4 Software Effort Estimation Techniques 

 6.4.1 Bottomup Estimating 

 6.4.2 The Top-down Approach and parametric models  

 6.4.3 Expert Judgement   

 6.4.4 Estimating by Analogy 

 6.4.5 Albrecht Function Point Analysis 

 6.4.6 Function Points Mark II 

 6.4.7 COSMIC Full Function Points 

6.5 COCOMO II:  A Parametric Productivity Model 

 6.5.1 Cost Estimation 

 6.5.2 Staffing Pattern 

6.6  Effect of Schedule Compression  

6.7 Capers Jones Estimating Rules of Thumb 

6.8  Summary 

6.9 Reference for further reading 

6.10 Model questions 

6.0 SOFTWARE EFFORT ESTIMATION: INTRODUCTION 

Effective software project estimation is one of the most challenging and 

important activities in software development. Proper project planning and 

control is not possible without a sound and reliable estimate. The software 

industry doesn’t estimate projects well and doesn’t use estimates 

appropriately. We suffer far more than we should as a result and we need 

to focus some effort on improving the situation. Under-estimating a 

project leads to under-staffing it (resulting in staff burnout), under-scoping 

the quality assurance effort (running the risk of low-quality deliverables) 

and setting too short a schedule (resulting in loss of credibility as 

deadlines are missed). For those who figure on avoiding this situation by 

generously padding the estimate, over-estimating a project can be just 

about as bad for the organization! If you give a project more resources 

than it really needs without sufficient scope controls, it will use them. The 



   

 
132 

Software Project  

Management 
 

 

132 

project is then likely to cost more than it should (a negative impact on the 

bottom line), take longer to deliver than necessary (resulting in lost 

opportunities), and delay the use of your resources on the next project. 

6.1 WHERE ARE ESTIMATES DONE? 

Estimates are carried out at various stages of a software project. At each 

stage, the reasons for the estimate and the methods used will vary. 

Strategic planning  the costs of computerizing potential applications 

might need to be estimated to help decide what priority to strategic 

planning given to each project. Such estimates might also influence the 

numbers of various detail, types of development staff to be recruited by 

the organization. Feasibility study  This ascertains that the benefits of the 

potential system which justifies the costs.  System specification Most 

system development methodologies distinguish between the definition of 

the users’ requirements and the design of the documents as how those 

requirements are to be fulfilled. The effort needed to implement different 

design proposals will need to be estimated. Estimates at the design stage 

will also confirm that the feasibility study is still valid, considering all that 

has been learnt during detailed requirements analysis. The estimate at this 

stage cannot be based only on the user requirement but technical plan is 

also needed 

Evaluation of suppliers' proposals  In the case of the IOE maintenance 

group accounts subsystem, for example, IOE might consider putting the 

actual system-building out to tender. Staff in the software houses that are 

considering a bid would need to scrutinize the system specification and 

produce estimates on which to base proposals. Amanda might still be 

required to carry out her own estimate to help judge the bids received. IOE 

might wish to question a proposal that seems too low: they might wonder, 

for example, whether the proposer had properly understood the 

requirements. If, on the other hand, the bids seem too high, they might 

reconsider in-house development. Project planning  as the planning and 

implementation of the project progresses to greater levels of detail, more 

detailed estimates of smaller work components will be made. As well as 

confirming the earlier and more broad-brush estimates, these will help 

answer questions about, for example, when staff will have completed tasks 

and be available for new activities.  

6.2 PROBLEMS WITH OVER- AND UNDER-ESTIMATES 

A project leader such as Amanda will need to be aware that the estimate 

itself, if known to the development team, will influence the time required 

to implement the system. An over-estimate might cause the project to take 

longer than it would otherwise. This can be explained by the application of 

two 'laws'. 

Parkinson's Law ' Work expands to fill the time available', which implies 
that given an easy target staff will work less hard. Brooks' Law  The 
effort required to implement a project will go up disproportionately with 

https://www.gristprojectmanagement.us/software-2/introduction-nre.html
https://www.gristprojectmanagement.us/software-2/introduction-nre.html


 

 
133 

 

Software Effort  
Estimation 

the number of staff assigned to the project. As the project team grows so 
will the effort that has to go into management, co-ordination, and 
communication. This has given rise, in extreme cases, to the notion of 
Brooks' Law: 'putting more people on a late job makes it later'. If there is 
an over-estimate of the effort required, then this might lead to more staff 
being allocated than are needed and managerial overheads will be 
increased. This is more likely to be of significance with large projects. 

Some have suggested that while the under-estimated project might not be 
completed on time or to cost, it might still be implemented in a shorter 
time than a project with a more generous estimate. There must, however, 
be limits to this phenomenon where all the slack in the project is taken up. 

The danger with the under-estimate is the effect on quality. Staff, 
particularly those with less experience, might respond to pressing 
deadlines by producing work which is sub-standard. Since we are into 
laws, this might be seen as a manifestation of Weinberg's zeroth law of 
reliability: 'if a system does not have to be reliable, it can meet any other 
objective'. In other words, if there is no need for the program actually to 
work, you can meet any programming deadline that might be set! Sub-
standard work might only become visible at the later, testing, phases of a 
project, which are particularly difficult to control and where extensive 
rework can have catastrophic consequences for the project completion 
date. 

Because of the possible effects on the behaviour of development staff 
caused by the size of estimates, they might be artificially reduced by their 
managers to increase pressure on staff. This will work only where staff are 
unaware that this has been done. Research has found that motivation and 
morale are enhanced where targets are achievable. If, over a period, staff 
become aware that the targets set are unattainable and that projects are 
routinely not meeting their published targets, then this will help to destroy 
motivation. Furthermore, people like to think of themselves as winners 
and there is a general tendency to put success down to our own efforts, 
while failure is blamed on the organization 

6.3 BASIS FOR SOFTWARE ESTIMATION  

Estimation is the process of finding an estimate, or approximation, which 
is a value that can be used for some purpose even if input data may be 
incomplete, uncertain, or unstable. 

Estimation determines how much money, effort, resources, and time it will 
take to build a specific system or product. Estimation is based on − 

• Past Data/Past Experience    

• Available Documents/Knowledge 

• Assumptions 

• Identified Risks 

 



   

 
134 

Software Project  

Management 
 

 

134 

Observations on Estimation 

• Estimation need not be a one-time task in a project. It can take place 

during − 

• Acquiring a Project. 

• Planning the Project. 

• Execution of the Project as the need arises. 

• Project scope must be understood before the estimation process 

begins. It will be helpful to have historical Project Data. 

• Project metrics can provide a historical perspective and valuable 

input for generation of quantitative estimates. 

• Planning requires technical managers and the software team to make 

an initial commitment as it leads to responsibility and accountability. 

• Experience can aid greatly. 

• Use at least two estimation techniques to arrive at the estimates and 

reconcile the resulting values. Refer Decomposition Techniques in 

the next section to learn about reconciling estimates. 

• Plans should be iterative and allow adjustments as time passes and 

more details are known. 

General Project Estimation Approach 

The Project Estimation Approach that is widely used is Decomposition 

Technique. Decomposition techniques take a divide and conquer 

approach. Size, Effort and Cost estimation are performed in a stepwise 

manner by breaking down a Project into major Functions or related 

Software Engineering Activities. 

Step 1 − Understand the scope of the software to be built. 

Step 2 − Generate an estimate of the software size. 

Step 3 − Generate an estimate of the effort and cost. You can arrive at the 

effort and cost estimates by breaking down a project into related software 

engineering activities. 

Step 4 − Reconcile estimates: Compare the resulting values from Step 3 to 

those obtained from Step 2. If both sets of estimates agree, then your 

numbers are highly reliable.  

Step 5 − Determine the cause of divergence and then reconcile the 

estimates. 

Estimation Accuracy 

Accuracy is an indication of how close something is to reality. Whenever 

you generate an estimate, everyone wants to know how close the numbers 



 

 
135 

 

Software Effort  
Estimation 

are to reality. You will want every estimate to be as accurate as possible, 

given the data you have at the time you generate it. And of course, you 

don’t want to present an estimate in a way that inspires a false sense of 

confidence in the numbers. Important factors that affect the accuracy of 

estimates are - 

• The accuracy of all the estimate’s input data. 

• The accuracy of any estimate calculation. 

• How closely the historical data or industry data used to calibrate the 

model matches the project you are estimating. 

• The predictability of your organization’s software development 

process. 

• The stability of both the product requirements and the environment 

that supports the software engineering effort. 

• Whether or not the actual project was carefully planned, monitored, 

and controlled, and no major surprises occurred that caused 

unexpected delays. 

Estimation Issues 

Often, project managers resort to estimating schedules skipping to 

estimate size. This may be because of the timelines set by the top 

management or the marketing team. However, whatever the reason, if this 

is done, then at a later stage it would be difficult to estimate the schedules 

to accommodate the scope changes. 

While estimating, certain assumptions may be made. It is important to 

note all these assumptions in the estimation sheet, as some still do not 

document assumptions in estimation sheets. Even good estimates have 

inherent assumptions, risks, and uncertainty, and yet they are often treated 

as though they are accurate. 

The best way of expressing estimates is as a range of possible outcomes 

by saying, for example, that the project will take 5 to 7 months instead of 

stating it will be complete on a particular date or it will be complete in a 

fixed no. of months. Beware of committing to a range that is too narrow as 

that is equivalent to committing to a definite date. 

Estimation Guidelines 

One should keep the following guidelines in mind while estimating a 

project − 

• During estimation, ask other people's experiences. Also, put your 

own experiences at task. 

• Assume resources will be productive for only 80 percent of their 

time. Hence, during estimation take the resource utilization as less 

than 80%. 



   

 
136 

Software Project  

Management 
 

 

136 

• Resources working on multiple projects take longer to complete 

tasks because of the time lost switching between them. 

• Include management time in any estimate. 

• Always build in contingency for problem solving, meetings and 

other unexpected events. 

• Allow enough time to do a proper project estimate. Rushed estimates 

are inaccurate, high-risk estimates. For large development projects, 

the estimation step should really be regarded as a mini project. 

• Where possible, use documented data from your organization’s 

similar past projects. It will result in the most accurate estimate. If 

your organization has not kept historical data, now is a good time to 

start collecting it. 

• Use developer-based estimates, as the estimates prepared by people 

other than those who will do the work will be less accurate. 

• Use several different people to estimate and use several different 

estimation techniques. 

• Reconcile the estimates. Observe the convergence or spread among 

the estimates. Convergence means that you have got a good 

estimate. Wideband-Delphi technique can be used to gather and 

discuss estimates using a group of people, the intention being to 

produce an accurate, unbiased estimate. 

• Re-estimate the project several times throughout its life cycle. 

6.4 SOFTWARE EFFORT ESTIMATION TECHNIQUES 

Barry Bochm. in his classic work on software effort models, identified the 

main ways of deriving estimates of software development effort as: 

algorithmic models   which use 'effort drivers' representing characteristics 

of the target system and the implementation environment to predict effort. 

 expert judgment   where the advice of knowledgeable stall" is solicited. 

analogy  where a similar, completed, project is identified, and its actual 

effort is used as a basis for the new project. 

 Parkinson  which identifies the staff effort available to do a project and 

uses that as the 'estimate'; 

price to win  where the 'estimate' is a figure that appears to be sufficiently 

low to win a contract. 

top-down  where an overall estimate is formulated for the whole project 

and is then broken down into the effort required for component tasks. 

bottom-up  where component tasks are identified and sized and these 

indiv idual estimates are aggregated. 



 

 
137 

 

Software Effort  
Estimation 

6.4.1 Bottom-up estimating 

Estimating methods can be generally divided into bottom-up and top-

down approaches. With the bottom-up approach, the estimator breaks the 

project into its component tasks and then estimates how much effort will 

be required to carry out each task. With a large project, the process of 

breaking down into tasks would be a repetitive one: each task would be 

analysed into its component sub-tasks and these in turn would be further 

analysed. This is repeated until you get to components that can be 

executed by a single person in about a week or two. The reader might 

wonder why this is not called a top-dow n approach: after all you are 

starting from the top and working down! Although this top-down analysis 

is an essential precursor to bottom-up estimating, it is really a separate one 

- that of producing a Work Breakdown Structure (WBS). The bottom-up 

part comes in adding up the calculated effort for each activity to get an 

overall estimate. 

6.4.2 The top-down approach and parametric models 

The top-down approach is normally associated with parametric (or 

algorithmic) models. These may be explained using the analogy of 

estimating the cost of rebuilding a house. This would be of practical 

concern to a house-owner who needs sufficient insurance cover to allow 

for rebuilding the property if it were destroyed. Unless the house-owner 

happens to be in the building trade it is unlikely that he or she would be 

able to work out how many bricklayer-hours, how many carpenter-hours, 

electrician-hours and so on would be required. Insurance companies, 

however, produce convenient tables where the house-owner can find an 

estimate of rebuilding costs based on such parameters as the number of 

storeys and the floor space that a house has. 'This is a simple parametric 

model. 

The effort needed to implement a project will be related mainly to 

variables associated with characteristics of the final system. The form of 

the parametric model will normally be one or more formulae in the form: 

effort = (system size) x (productivity rate). For example, system size 

might be in the form 'thousands of lines of code' (KLOC) and the 

productivity rate 40 days per KLOC. The values to be used will often be 

matters of subjective judgment. 

A model to forecast software development effort therefore has two key 

components. The first is a method of assevsing the size of the software 

development task to be undertaken. The second assesses the rate of work 

at which the task can be done.  For example. Amanda at IOE might 

estimate that the first software module to be constructed is 2 KLOC. She 

might then judge that if rate undertook the development of the code, with 

her expertise she could work at a rate of 40 days per KLOC and complete 

the work in 2 x 40 days, that is. 80 days, while Ken. who is less 

experienced, would need 55 days per KLOC and take 2 x 55 that is, 110 

days to complete the task? Some parametric models, such as that implied 

by function points, are focused on system or task size, while others, such 



   

 
138 

Software Project  

Management 
 

 

138 

are COCOMO are more concerned with productivity factors. Having 

calculated the overall effort required, the problem is then to allocate 

proportions of that effort to the various activ ities within that project. 

The top-down and bottom-up approaches are not mutually exclusive. 

Project managers will probably try to get several different estimates from 

different people using different methods. Some parts of an overall estimate 

could be derived using a top-down approach while other parts could be 

calculated using a bottom-up method. 

At the earlier stages of a project, the top-down approach would tend to be 

used, while at later stages the bottom-up approach might be preferred. 

Comparison between bottom-up approach and top-down approach  

Bottom-up 

• Use when no past project data 

• Identify all tasks that must be done – so quite time consuming 

• Use when you have no data about similar past projects 

Top-down 

• Produce overall estimate based on project cost drivers 

• Based on past project data 

• Divide overall estimate between jobs to be done 

6.4.3 Expert judgment 

This is asking someone who is knowledgeable about either the application 

area or the development environment to give an estimate of the effort 

needed to carry out a task. This method will most likely be used when 

estimating the effort needed Expert judgment as an estimating method'.  

The estimator would have to carry out impact analysis in order to judge 

the proportion of code that would be affected and from that derive an 

estimate. Someone already familiar with the software would be in the best 

position to do this. 

Some have suggested that expert judgment is simply a matter of guessing, 

but experts tend to use a combination of an informal analogy approach 

where similar projects from the past are identified and bottom-up 

estimating. 

6.4.4 Estimating by analogy 

The use of analogy is also called case-based reasoning. The estimator 

seeks out projects that have been completed (source cases) and that have 

similar characteristics to the new project (the target case). The effort that 

has been recorded for the matching source case can then be used as a base 

estimate for the target. The estimator should then try to identify any 

https://www.gristprojectmanagement.us/functions/bottomup-estimating.html
https://www.gristprojectmanagement.us/functions/bottomup-estimating.html


 

 
139 

 

Software Effort  
Estimation 

differences between the target and the source and adjust the base estimate 

for the new project. 

This might be a good approach where you have information about some 

previous projects but not enough to draw generalized conclusions about 

what variables might make good size parameters. 

A problem here is how you identify the similarities and differences 

between the different systems. Attempts have been made to automate this 

process. One software application that has been developed to do this is 

ANGEL. This identifies the source case that is nearest the target by 

measuring the Euclidean distance between cases. The source case that is at 

the shortest Euclidean distance from the target is deemed to be the closest 

match. The Euclidean distance is calculated: 

distance = square-root of ((target_parameter, - source_parameterx)' + 

... + (target_parameterm — source_parameterH)2) 

6.4.5 Albrecht function point analysis 

This is a top-down method that was devised by Allan Albrecht when he 

worked for IBM. Albrecht was investigating programming productivity 

and needed some way to quantify the functional size of programs 

independently of the programming languages in which they had been 

coded. He developed the idea of function points (l"Ps). 

The basis of function point analysis is that computer-based information 

systems comprise five major components, or external user types in 

Albrecht *s terminology, that are of benefit to the users: 

• External input types are input transactions that update internal 

computer files. 

• External output types are transactions where data is output to the 

user. Typically, these would be printed reports, since screen displays 

would come under external inquiry- types. 

• Logical internal file types are the standing files used by the system. 

The term file' does not sit easily with modern information systems. It 

refers to a group of data that is usually accessed together. It might be 

made up of one or more record types. For example, a purchase order 

file might be made up of a record type PuRCHASEORDER plus a 

second that is repeated for each item ordered on the purchase order - 

PurchaseOrderItem. 

• External interface file types allow for output and input that might 
pass to and from other computer applications. Examples of this 
would be the transmission of accounting data from an order 
processing system to the main ledger system or the production of a 
file of direct debit details on a magnetic or electronic medium to be 
passed to the Bankers Automated Clearing System (BACS). Files 
shared among applications would also be counted here. 

https://www.gristprojectmanagement.us/software-2/albrecht-function-point-analysis.html


   

 
140 

Software Project  

Management 
 

 

140 

• External inquiry types - note the US spelling of inquiry - are 
transactions initiated by the user that provide information but do not 
update the internal files. The user inputs some information that 
directs the system to the details required. 

6.4.6 Function points Mark II 

The Mark II method has been recommended by the CCTA (Central 
Computer and Telecommunications Agency), which lays down standards 
for UK government projects. At one time this Mark II approach seemed to 
be a good method to use with SSADM, but some difficulties are now 
apparent. The 'Mark II' label implies an improvement and replacement of 
the Albrecht method. The Albrecht (now IFPUG) method, however, has 
had many refinements made to it and FPA Mark II remains a minority 
method used mainly in the UK. 

6.4.7 COSMIC Full Function Points 

COSMIC function points are a unit of measure of software functional 
size.  The size is a consistent measurement (or estimate) which is very 
useful for planning and managing software and related activities.  The 
process of measuring software size is called functional size measurement 
(FSM).  COSMIC functional size measurement is applicable to business, 
real-time and infrastructure software at any level of decomposition.  It is 
independent of the technology or processes used to develop the system.  It 
is an ISO standard.  It is a refined improvement over its predecessors.  The 
unit of size is the COSMIC Function Point or CFP. 

Uses 

Once you have measured (or estimated) the size in COSMIC Function 
Points you can then use this as the base metric to : 

• Estimate development effort 

• Estimate project duration 

• Estimate project quality achievement 

• Estimate test effort 

• Control scope creep 

• Assess the value a software asset 

• Estimate maintenance and replacement costs 

• Assess the achievement of quality (defect removal rates) 

• As the basis for fixed price contracts 

• and more. 

Based on Principles 

The COSMIC Function Point sizing method of measuring software 

requirements is based on two main principles: 

 



 

 
127 

 

Software Effort  
Estimation 

1. The ‘Software Context Model’ 

 Defines the software to be measured 

• Software is bounded by hardware and typically structured 

into layers. 

• The scope of any piece of software to be measured shall 

depend on the purpose of the measurement and shall be 

confined wholly within a single layer. 

• The functional users of a piece of software to be measured 

shall be identified from its Functional User Requirements 

(FUR) as the senders and/or intended recipients of data 

to/from the software respectively. 

• A precise COSMIC size measurement of a piece of software 

requires that its FUR is known at a level of granularity at 

which its functional processes and sub-processes may be 

identified. 

• An approximate COSMIC size measurement is possible if its 

FUR are measured at a high level of granularity by an 

approximation approach and scaled to the level of granularity 

of the functional processes. 

2. The ‘Generic Software Model’ 

 Generic concepts applicable to all software 

• A piece of software interacts with its functional users across 

a boundary, and with persistent storage within the boundary. 

• The FUR of a piece of software can be mapped into 

unique functional processes. 

• Each functional process is started by its triggering Entry data 

movement. The data group moved by the triggering Entry is 

generated by a functional user in response to a triggering 

event. 

• A functional process shall include at least one Entry data 

movement and either a Write or an Exit data movement. There 

is no upper limit to the number of data movements in a 

functional process 

 



   

 
128 

Software Project  

Management 
 

 

128 

• Each functional process consists of sub-processes, data 

movements (DMs) and data manipulations. 

• As an approximation for measurement purposes, the COSMIC 

method assumes that the functionality of any data 

manipulation is accounted for by the data movement with 

which it is associated. 

• There are four data movement types, Entry, Exit, Write and 

Read. 

• A data movement moves a single data group, which consists 

of a unique set of data attributes that describe a single object 

of interest. 

 

6.5 COCOMO II: A PARAMETRIC PRODUCTIVITY 

MODEL 

In modern software development practice, it is crucial to know the cost 

and time required for the software development before establishing new 

software projects. One of the efficient cost estimation models which are 

extensively applied to many software projects is called “Constructive Cost 

Model (COCOMO)”. 

COCOMO is a procedural software cost estimation model proposed by 

Barry W. Boehm in 1981. This cost estimation model is extensively used in 

predicting the effort, development time, average team size and effort 

required to develop a software project. The distinctiveness of this 

strategy is that COCOMO estimates the cost based on the number of lines 

of source code and sets of subjective assessment (cost drivers) of 

product, hardware, personnel, and project attributes. This provides 

transparency to the model which allows software managers to understand 

why the model gives the estimates it does. Moreover, the 

baseline COCOMO originally underlies a waterfall model lifecycle. The 

table below indicates the criteria for selecting the type of software project 

to be applied for further calculation in the model. 



 

 
129 

 

Software Effort  
Estimation 

 

Table 1. Comparison between three classes of software project in 

terms of size, team size, developer experience, environment, 

innovation, and deadline. 

Types of COCOMO model 

COCOMO model allows software manager to decide how detailed they 

would like to conduct the cost estimation for their own project. COCOMO 

can unveil the efforts and schedule of a software product based on the size 

of the software in different levels. There are basic 

COCOMO, Intermediate COCOMO, and Detailed/Completed 

COCOMO. 

Basic COCOMO model  the basic COCOMO is used for rough 

calculation which limits accuracy in calculating software 

estimation. This is because the model solely considers based on lines of 

source code together with constant values obtained from software project 

types rather than other factors which have major influences on Software 

development process. Intermediate COCOMO model Intermediate 

COCOMO model is an extension of the Basic COCOMO model which 

includes a set of cost drivers into account to enhance more accuracy to the 

cost estimation model as a result. Complete/detailed COCOMO model 

the model incorporates all qualities of both Basic COCOMO and 

Intermediate COCOMO strategies on each software engineering process. 

The model accounts for the influence of the individual development phase 

(analysis, design, etc.) of the project. 

 

 



   

 
130 

Software Project  

Management 
 

 

130 

Pros 

• COCOMO is transparent, one can see how it works unlike other 

models such as SLIM. 

• COCOMO works on historical data or the experience, therefore it is 

predictable and more accurate. 

• Easy to implement factors, as the drivers help to estimate the impact 

of different factors that affect the projects. 

• Easy to estimate the total cost of the projects. This is because 

COCOMO uses a regression formula from historical projects. 

Cons 

• Cocomo ignores the requirements of the project and all the related 

documentation related to the project. 

• Cocomo ignores customer skills, cooperation, knowledge, and other 

parameters. 

• When the Cocomo cannot establish a good understanding of the 

project between the customers and the developers. 

• Cocomo is dependent, If there are changes to the actual amount of 

time spent on these phases, it will affect the accuracy. 

• There are certain factors that are beyond the control of the developers 

or customers such as hardware malfunctions and failures. 

COCOMO-II is the revised version of the original Cocomo 

(Constructive Cost Model) and is developed at University of Southern 

California. It is the model that allows one to estimate the cost, effort and 

schedule when planning a new software development activity. 

It consists of three sub-models: 

 

1. End User Programming: 

Application generators are used in this sub-model. End users write 

the code by using these application generators. Example –

 Spreadsheets, report generator, etc. 

 



 

 
131 

 

Software Effort  
Estimation 

2. Intermediate Sector: 

 

(a) Application Generators and Composition Aids – 

This category will create largely prepackaged capabilities for user 

programming. Their product will have many reusable components. 

Typical firms operating in this sector are Microsoft, Lotus, Oracle, 

IBM, Borland, Novell. 

 (b) Application Composition Sector – 

 This category is too diversified and to be handled by prepackaged 

solutions. It includes GUI, Databases, domain specific components 

such as financial, medical, or industrial process control packages. 

 (c) System Integration – 

 This category deals with large scale and highly embedded systems. 

3. Infrastructure Sector: 

This category provides infrastructure for the software development 

like Operating System, Database Management System, User 

Interface Management System, Networking System, etc. 

Stages of COCOMO II: 

 

1. Stage-I: 

It supports estimation of prototyping. For this it uses Application 

Composition Estimation Model. This model is used for the 

prototyping stage of application generator and system integration. 



   

 
132 

Software Project  

Management 
 

 

132 

2. Stage-II: 

It supports estimation in the early design stage of the project when 

we less know about it. For this it uses Early Design Estimation 

Model. This model is used in early design stage of application 

generators, infrastructure, system integration. 

3. Stage-III: 

It supports estimation in the post architecture stage of a project. For 

this it uses Post Architecture Estimation Model. This model is used 

after the completion of the detailed architecture of application 

generator, infrastructure, system integration. 

The Constructive Cost Model (COCOMO) is an algorithmic software cost 

estimation model developed by Barry Boehm. The model uses a basic 

regression formula, with parameters that are derived from historical 

project data and current project characteristics. COCOMO was first 

published in 1981 Barry W. 

References to this model typically call it COCOMO 81. In 1997 

COCOMO II was developed and finally published in 2000 in the book 

Software Cost Estimation with COCOMO II. COCOMO II is the 

successor of COCOMO 81 and is better suited for estimating modern 

software development projects. It provides more support for modern 

software development processes and an updated project database. 

COCOMO II is tuned to modern software life cycles. The original 

COCOMO model has been very successful, but it doesn't apply to newer 

software development practices as well as it does to traditional practices. 

COCOMO II targets modern software projects and will continue to evolve 

over the next few years. 

COCOMO II has three different models: 

The Application Composition Model 

Suitable for projects built with modern GUI-builder tools. Based on new 

Object Points. 

The Early Design Model 

You can use this model to get rough estimates of a project's cost and 

duration before you've determined its entire architecture. It uses a small 

set of new Cost Drivers, and new estimating equations. Based on 

Unadjusted Function Points or KSLOC. 

The Post-Architecture Model 

This is the most detailed COCOMO II model. You'll use it after you've 

developed your project's overall architecture. It has new cost drivers, new 

line counting rules, and new equations. 

 



 

 
133 

 

Software Effort  
Estimation 

6.5.1 Cost estimation  

For instance, detailed COCOMO will perform cost estimation in each 

development phase of Waterfall Model. 

 

Figure 1. An illustration of classical Waterfall Model. 

Calculation 

In COCOMO, the general calculation steps of COCOMO-based cost 

estimation are the following: 

1. Get an initial estimate of the development effort from evaluation 

of thousands of delivered lines of source code (KDLOC). 

2. Determine a set of 15 cost factors from various attributes of the 

project. 

3. Calculate the effort estimate by multiplying the initial estimate 

with all the multiplying factors i.e., multiply the values in previous 

steps. 

Now, let’s apply these steps to the real example in Basic COCOMO first. 

Question statement: Suppose the project was estimated to be 400 KDLOC 

calculate the effort, development time, and time of each of the 3 modes 

Note: the basic COCOMO is used in Organic mode by default. 

The arithmetic formula of Basic COCOMO is 

 

Figure 2. Formula for Basic COCOMO 



   

 
134 

Software Project  

Management 
 

 

134 

Each of the constant a, b, c, d can be defined as show in the Table 2. 

 

Table 2. Constant values corresponding to software project type as 

stated in previous section. 

The calculations of Basic COCOMO corresponding to each of software 

project types are shown in the Table 3. 

 

Table 3. The calculation of Basic COCOMO on each  

software project type. 

Rather than the sole consideration on the number of lines of the source 

code as shown in Basic COCOMO, Intermediate COCOMO introduces 

sets of 15 subjective assessment called “Cost Drivers” to ensure that other 

aspects of Software Development are considered in the cost estimation. 

Cost drivers are divided into 4 groups including, product attributes, 

hardware attributes, personal attributes, and project attributes. 



 

 
135 

 

Software Effort  
Estimation 

 

Figure 3. Cost drivers 

Each of cost driver is rated on the scale of are very low to extremely high 

to calculate the specific effort multiplier and each of them returns an 

adjustment factor which multiplied yields in the total EAF (Effort 

Adjustment Factor). 

The scale includes very low, low, normal, high very high, extra high, 

accordingly. The adjustment factor is 1 for a cost driver that is judged as 

normal. In practice, typical values for EAF range from 0.9 to 1.4. 

 

Figure 5. Ratings for cost drivers under product attribures and 

computer attributes 



   

 
136 

Software Project  

Management 
 

 

136 

 

Figure 6. Ratings for cost drivers under personnel attributes and 

project attributes 

By taking all cost drivers into account represented by EAF, the arithmetic 

cost estimation formula for Intermediate COCOMO can be derived as 

follow: 

 

Figure 7. Formula for Intermediate COCOMO with an inclusion of 

Effort Adjustment Factor (EAF) 

6.5.2 Staffing Pattern  

Putnam was the first to study the problem of what should be a proper 

staffing pattern for software projects. He extended the classical work of 

Norden who had earlier investigated the staffing pattern of general 

research and development type of projects. To appreciate the staffing 

pattern desirable for software projects, we must understand both Norden’s 

and Putnam’s results.  

Norden’s Work   

Nordern studied the staffing patterns of several R&D projects.  He found 

the staffing patterns of R&D projects to be very different from the 

manufacturing or sales type of work.  Staffing pattern of R&D types of 

projects changes dynamically over time for efficient manpower utilization.  

He concluded that staffing pattern for any R&D project can be 

approximated by the Rayleigh distribution curve.  



 

 
137 

 

Software Effort  
Estimation 

Putnam’s Work  

 Putnam studied the problem of staffing of software projects. 

He found that staffing pattern for software development projects has 

characteristics very Similar to R&D projects. He adapted the Rayleigh-

Norden curve to relate the no of delivered lines of code to the effort and 

the time required to develop the product.  Initially less no of developers 

are needed.  As the project progresses and more detailed work is 

performed, the number of developers increases and reaches a peak during 

product delivery  After delivery, the no. of project staff falls consistently 

during product maintenance. 

6.6 EFFECT OF SCHEDULE COMPRESSION 

There are 2 Techniques for Schedule Compression:  Fast Tracking and  

Crashing No matter how well you plan a project, actual results will differ 

from what you have planned. In terms of schedule, the actual durations 

of tasks can take longer than planned. To meet the project deadline, you 

need to take corrective actions to get back on track and these are called 

schedule compression methods. Schedule compression helps you to get 

your project back on track. There are two methods for schedule 

compression.  

Schedule Compression Definition 

Schedule compression techniques are applied during develop 

schedule process if a project is behind the schedule. The objective of 

schedule compression is to try to compress the schedule without 

changing project scope. Because, if a project scope has not changed, and if 

the project is behind schedule, you can meet the planned deadline only by 

compressing the remaining schedule of the project.There are 2 approaches 

for schedule compression  

The 1st schedule compression technique: What is fast tracking in 

project management? 

First approach is Fast Tracking. Let’s give fast tracking project 

management definition. In fast tracking schedule compression 

technique, critical path activities are performed in parallel instead of 

series. This is possible only the activities are not in mandatory 

dependency. Because, if two activities are depending on each other by 

nature, you cannot do these two activities in parallel. For instance, you 

cannot start testing of a screen before completing development. If critical 

path activities are depending on each other because of resource 

dependency or if there is a discretionary dependency, you can fast track 

those activities to complete remaining activities faster. 



   

 
138 

Software Project  

Management 
 

 

138 

 

Let’s visualize fast tracking over a sample. As a fast-tracking example, 

let’s consider that there are 3 activities that need to be completed each 

other: Activity #1, Activity #2 and Activity #3. If you are aiming to finish 

the project faster, you can perform Activity #2 and Activity #3 in parallel 

after completing activity #1. This is called fast tracking schedule 

compression approach. 

The 2nd schedule compression technique: What is crashing in project 

management? 

Second technique is crashing. In crashing schedule compression 

technique, there is a trade-off between cost and schedule. If the scope 

is the same and project is behind schedule, another option for compressing 

the schedule is putting extra resources on remaining activities of the 

project. Because if it is possible to assign more than one resource on an 

activity, activity duration will decrease respectively. This will help to 

complete the project faster. However, since these extra resources were not 

in the initial plan, there will be an additional cost if crashing is used for 

schedule compression. 

 

5 major steps to follow if the project is behind the schedule 

If a project is behind the schedule, there are 5 major steps that must be 

followed in sequence. 

• First, check risks and re-estimate. Because, for the remaining 

activities, if the risks that were considered during planning are no 



 

 
139 

 

Software Effort  
Estimation 

longer valid, re-estimation of the remaining activities can result in 

shorter activity durations. Re-estimation will show how long will it 

take to complete remaining activities of the project. 

• If re-estimation results in a later deadline for project 

completion, Fast-tracking the project must be 

considered. Remaining critical path activities are evaluated and 

possible activities that can be performed in parallel can be done to 

shorten the duration of the project. This is one of the advantages of 

fast tracking in project management over crashing because fast-

tracking does not bring an extra cost to project. 

• The third step is crashing the project. Extra resources are planned, 

and extra budget is allocated to accommodate the increasing costs. 

Since more resources will work on remaining activities of the 

project, it is expected to finish the project on time. 

• The fourth step is scope reduction. Reducing the scope can help to 

reduce the remaining activities in the project and if the customer 

agrees, reducing the scope can help to complete the project on time. 

• The fifth step is cutting the quality. Achieving a certain level of 

quality means cost and time. If the customer agrees to decrease its 

quality expectations, cutting quality can help you to complete the 

project faster. Note that, 4th and 5th steps are not recommended the 

course of actions in a project 

CAPERS JONES ESTIMATING RULES OF THUMB 

Accurate software estimating is too difficult for simple rules of thumb.  

Yet despite the availability of more than 50 commercial software 

estimating tools, simple rules of thumb remain  the  most  common  

approach.    Rules  based  on  the  function  point  metric  are  now 

replacing the older LOC rules.  

Introduction 

For  many  years  manual  estimating  methods  were  based   on  the  

“lines  of  code”  (LOC)  metric and several workable rules of thumb were  

developed for common procedural programming languages such as 

Assembly, COBOL, FORT RAN, PASCAL, PL/I and the like.  

Tables  1  and  2  illustrate  samples  of  the  LOC  based rules  of  thumb  

for  procedural languages in two forms:  Table 1 uses “months” as the unit 

for work, while table 2 uses “hours” as the unit for work.  Both hourly and 

monthly work metrics are common in the software  literature,  with  the  

hourly  form  being  common  for  small  programs  and  the monthly form 

being common for large systems.  

 



   

 
140 

Software Project  

Management 
 

 

140 

Table 1:  Rules of Thumb Based on LOC Metrics for  

Procedural Languages 

(Assumes 1 work month = 132 work hours) 

Size of 

Program 

in LOC 

Coding 

LOC per Month 

Coding 

Effort 

(Months) 

Testing 

Effort 

Percent 

Noncode 

Effort 

Percent 

Total 

Effort 

(Months) 

Net LOC 

Per 

Month 

1 2500 0.0004 10.00% 10.00% 0.0005 2083 

10 2250 0.0044 20.00% 20.00% 0.0062 1607 

100 2000 0.0500 40.00% 40.00% 0.0900 1111 

1,000 1750 0.5714 50.00% 60.00% 1.2000 833 

10,000 1500 6.6667 75.00% 80.00% 17.0000 588 

100,000 1200 83.3333 100.00% 100.00% 250.0000 400 

1,000,000   1000 1000.0000 125.00% 150.00% 3750.0000 267 

As  can  be  seen,  the  “monthly”  form  of  this  table  is   not  very  

convenient  for  the  smaller end of the spectrum, but the “hourly” form is 

inconvenient at the large end.  

Table 2:  Rules of Thumb Based on LOC Metrics for  

Procedural Languages 

(Assumes 1 work month = 132 work hours) 

Size of 

Program 

in LOC 

Coding 

LOC 

per 

Month 

Coding 

Effort 

(Months) 

Testing 

Effort 

Percent 

Noncode 

Effort 

Percent 

Total 

Effort 

(Months) 

Net LOC 

Per 

Month 

1 18.94 0.05 10.00% 10.00% 0.06 15.78 

10 17.05 0.59 20.00% 20.00% 0.82 12.18 

100 15.15 6.60 40.00% 40.00% 11.88 8.42 

1,000 13.26 75.43 50.00% 80.00% 173.49 5.76 

10,000 11.36 880.00 75.00% 100.00% 2,420.00 4.13 

100,000 9.09 11,000.00   100.00% 150.00% 38,500.00    2.60 

1,000,000   7.58 132,000.00 125.00% 150.00% 495,000.00 2.02 

Also,  the  assumption  that  a  work  month  comprises  132  hours  is  a  

tricky  one,  since  the  observed number of hours worked in a month  can 

run from less than 120 to more than 170.  Because the actual number of 

hours varie s from project to project, it is best to replace  the  generic  rate  

of  “132”  with  an  actual  or   specific  rate  derived  from  local 

conditions and work patterns.  



 

 
141 

 

Software Effort  
Estimation 

The  development  of  Visual  Basic  and  its  many  competitors  such  as  

Realizer  have  changed the way many modern programs are developed.  

Although these visual languages do  have  a  procedural  source  code  

portion,  quite  a  bit  of  the  more  complex  kinds  of  “programming” are 

done using button controls, pull-down menus, visual worksheets, and  

reusable components.  In other words, programming is being done without 

anything that  can be identified as a “line of code” for measurement or 

estimation purposes.  By the end  of  the  century  perhaps  30%  of  the  

new  software  applications  will  be  developed  using  either object-

oriented languages or visual languages (or both).  

For  large  systems,  programming  itself  is  only  the  fourth  most  

expensive  activity. The three  higher-cost  activities can not really  be  

measured  or  estimated  effectively  using  the lines  of  code  metric.    

Also,  the  fifth  major  cost  element,  project  management,  cannot easily 

be estimated or measured using the LOC metric . The usefulness of a 

metric such as lines of code which can only measure and estimate one out  

of  the  five  major  software  cost  elements  is  a  significant  barrier  to  

economic understanding.  

The Development of Function Point Metrics 

By  the  middle  1970’s  IBM’s  software  community  was  topping  

25,000  and  the  costs  of building  and  maintaining  software  were  

becoming  a  significant  portion  of  the  costs  and budgets for new 

products.  

Programming  languages  were  exploding  in  numbers,  and  within  IBM  

applications  were being  developed  in  assembly  language,  APL,  

COBOL,  FORTRAN,  RPG,  PL/I,  PL/S  (a derivative  of  PL/I)  and  

perhaps  a  dozen  others.    Indeed,  many  software  projects  in  IBM and  

elsewhere  used  several  languages  concurrently, such  as  COBOL,  

RPG,  and  SQL  as part of the same system.  

Allan J. Albrecht and his colleagues at IBM White Plains were tasked with 

attempting to develop   an   improved  methodology  for  sizing,  

estimating,  and  measuring  software projects.  The method they 

developed is now known as “function point analysis” and the basic metric 

they developed is termed a “function point.”  

In October of 1979 Allan Albrecht presented the function point metric at a 

conference in  Monterey,  California  sponsored  jointly  by  IBM  and  

two  IBM  user  groups,  SHARE  and GUIDE.    Concurrently,  IBM  

placed  the  basic  function  point  metric  into  the  public domain. Now  

that  the  function  point  metric  has  been  in  use for  almost  20  years  

on  many thousands of software projects, a new family of simple rules of 

thumb has been derived.   

These new rules are based on function points, and encompass software 

sizing algorithms, schedule algorithms, quality algorithms, and other 

interesting topics.  This  article  contains  a  set  of  ten  simple  rules  of  

thumb  that  cover  various  aspects  of  software development and 



   

 
142 

Software Project  

Management 
 

 

142 

maintenance.  The rules assume the version 4.1 function point  counting 

rules published by the International Function Point Users Group (IFPUG).  

The International Function Point Users Group (IFPUG ) is a non-profit 

organization which has  become  the  largest  software  metrics  

association   in  history.    Between  IFPUG  in  the United  States  and  

other  function  point  affiliates  in  about  20  countries,  more  than  2000 

corporations   and   15,000  individuals  now  comprise  the  function  

point  community.  Membership in function point user groups has been 

growing at more than 50% per year, while usage of lines of code has been 

declining for more than 10 years.  

Users  of  other  kinds  of  function  points  such  as  Mark  II,  COSMIC,  

web-object  points, story  points,  engineering  function  points,  etc.  

should  seek  out  similar  rules  from  the appropriate sponsoring 

organization.  However, most of the function point variants have the  

interesting  property  of  creating  function  point  totals  about  15%  

larger  than  IFPUG function points.  

The following set of rules of thumb are known to have a high margin of 

error.  They are being  published  in  response  to  many  requests  for  

simple  methods  that  can  be  used manually or with pocket calculators or 

spreadsheets.  The best that can be said is that the rules  of  thumb  are  

easy  to  use and  can  provide  a “sanity check” for estimates produced by 

other and hopefully more rigorous methods.  

SIZING RULES OF THUMB 

The function point metric has transformed sizing from a very difficult task 

into one that is now both easy to perform and comparatively accurate.   

Sizing Source Code Volumes 

Now that thousands of software projects have been measured using both 

function points  and lines of code (LOC), empirical ratios have been  

developed for converting LOC data into function points, and vice versa.  

The following rules of thumb are based on “logical statements” rather than 

“physical lines.” For similar information on almost 500 programming 

languages refer to my book Applied Software Measurement 

Rule 1: Sizing Source Code Volumes   

One function point = 320 statements for basic assembly language  

One function point = 125 statements for the C programming language  

One function point = 107 statements for the COBOL language  

One function point =   71 statements for the ADA83 language  

One function point =   15 statements for the SMALLTALK language  

The  overall  range  of  non-commentary  logical  source code  statements  

to  function  points ranges from more than 300 statements per function 

point for basic assembly language to less  than  15  statements  per  



 

 
143 

 

Software Effort  
Estimation 

function  point  for  object-oriented  languages  with  full  class  libraries 

and many program generators. However,  since  many  procedural  

languages  such  as  C,  Cobol,  Fortran,  and  Pascal  are close  to  the  100  

to  1  mark,  that  value  can  serve  as   a  rough  conversion  factor  for  

the general family of procedural source code languages. 

Sizing Paper Deliverables 

Software   is   a   very   paper   intensive   industry.      More  than   50   

kinds   of   planning, requirements,  specification,  and  user-related  

document  types  can  be  created  for  large software projects.  For many 

large systems and especially for large military projects, the costs of 

producing paper documents costs far more than source code. The  

following  rule  of  thumb  encompasses  the  sum  of the  pages  that  will  

be  created  in requirements,  specifications,  plans,  user  manuals, and  

other  business-related  software documents.  

Rule 2:  Sizing Software Plans, Specifications, and  Manuals  Function  

points  raised  to  the  1.15  power  predicts  a pproximate  page  counts  

for  paper documents associated with software projects. 

Paperwork  is  such  a  major  element  of  software  costs   and  schedules  

that  it cannot safely be ignored.  Indeed, one of the major problems with 

the “lines of code” (LOC) metric was that  it  tended  to  conceal  both  the  

volumes  of  paper  deliverables  and  the  high  costs  of software 

paperwork.  

Sizing Creeping User Requirements 

The function point metric is extremely useful in me asuring the rate at 

which requirements creep. 

Rule 3: Sizing Creeping User Requirements  Creeping  user  requirements  

will  grow  at  an  average rate of 2% per month from the design through 

coding phases.  

Assume that you and your clients agree during the requirements to 

develop an application of  exactly  100  function  points.    This  rule  of  

thumb  implies  that  every  month  thereafter, the  original requirements 

will grow by a rate of 2 function points.  Since the design and coding 

phases of a 100-function point project are usually about 6 months, this rule 

would imply that about 12% new features would be added and the final 

total for the application would be 112 function points rather than the initial 

value of 100 function points.  

Sizing Test Case Volumes 

The  function  point  metric  is  extremely  useful  for  test  case  sizing,  

since  the  structure  of  function  point  analysis  closely  parallels  the  

items  that  need  to  be  validated  by  testing.  Commercial software 

estimating tools can predict the number of test cases for more than a dozen 

discrete forms of testing.  This simple rule of thumb encompasses the sum 

of all test cases:  



   

 
144 

Software Project  

Management 
 

 

144 

Rule 4: Sizing Test Case Volumes  Function points raised to the 1.2 

power predicts the approximate number of test cases created. 

A  simple  corollary  rule  can  predict  the  number  of  times  each  test  

case  will  be  run  or executed   during   development:      assume   that   

each   test   case   would   be   executed  approximately four times during 

software development.  

Sizing Software Defect Potentials 

The “defect potential” of an application is the sum  of bugs or errors that 

will occur in five major  deliverables:    1)  requirements  errors;    2)  

design  errors;  3)  coding  errors;  4)  user documentation  errors;  5)  bad  

fixes,  or  secondary  errors  introduced  in  the  act  of  fixing  a prior 

error.  

One of the many problems with “lines of code” metrics is the fact that 

more than half of software defects are found in requirements and design, 

and hence the LOC metric is not capable of either predicting or measuring 

their volumes with acceptable accuracy. Because the costs and effort for 

finding and fixing bugs is usually the largest identifiable software  cost  

element,  ignoring  defects  can  throw  off  estimates,  schedules,  and  

costs  by massive amounts.  

Rule 5:  Sizing Software Defect Potentials  Function  points  raised  to  the  

1.25  power  predicts  the  approximate  defect potential for new software 

projects. 

A similar corollary rule can predict the defect potentials for enhancements.  

In this case, the rule applies to the size of the enhancement rather than the 

base that is being updated: Function  points  raised  to  the  1.27  power  

predicts  the  approximate  defect  potential  for enhancement software 

projects. The higher power used in the enhancement rule is because of the 

latent defects lurking in the base product that will be encountered during 

the enhancement process. Incidentally,  if  you  are  doing  complex  

client-server  applications  the  1.27  power actually matches  the  defect  

potentials  somewhat  better  than the  1.25  power.    Client-server 

applications are often very buggy, and the higher power indicates that fact. 

Sizing Software Defect Removal Efficiency 

The  defect  potential  is  the  life-cycle  total  of  errors  that  must  be  

eliminated.    The  defect  potential will be reduced by somewhere 

between 85%  (approximate industry norms) and  99%  (best  in  class  

results)  prior  to  actual  deliver y  of  the  software  to  clients.    Thus  the 

number of delivered defects is only a small fraction of the overall defect 

potential. 

Rule 6 :Sizing Defect Removal Efficiency  

Each  software  review,  inspection,  or  test  step  will   find  and  remove  

30%  of  the bugs that are present. The implication of this rule means that 

a series of between six and 12 consecutive defect removal  operations  



 

 
145 

 

Software Effort  
Estimation 

must  be  utilized  to  achieve  very  high-quality  levels.    This  is  why 

major  software  producers  normally  use  a  multi-stage  series  of  design  

reviews,  code inspections, and various levels of testing from unit test 

through system test. 

RULES OF THUMB FOR SCHEDULES, RESOURCES, AND 

COSTS 

After the sizes of various deliverable items and potential defects have been 

quantified, the next stage in an estimate is to predict schedules, resources, 

costs, and other useful results.  

Estimating Software Schedules 

Rule  7  calculates  the  approximate  interval  from  the  start  of  

requirements  until  the  first delivery to a client: 

Rule 7: Estimating Software Schedules  

Function  points  raised  to  the  0.4  power  predicts  the  approximate  

development  schedule in calendar months. 

Among our clients, the range of observed schedules  in calendar months 

varies from a low  of about 0.32 to a high or more than 0.45.  Table 4 

illustrates the kinds of projects whose schedules are typically found at 

various power levels, assuming a project of 1000 function  points in size:  

Table 4:  Software Schedules in Calendar Months  (Assumes 1000 

function points from requirements to delivery) 

Power Schedule in 

Calendar Months 

Projects Within Range 

0.32 9.12  

0.33 9.77 Agile 

0.34 10.47 Extreme 

0.35 11.22 Web 

0.36 12.02  OO software 

0.37 12.88 Client-server software 

0.38 13.80  Outsourced software 

0.39  14.79 MIS software 

0.40 15.85 Commercial software 

0.41 16.98  Systems software 

0.42 18.20  

0.43 19.50 Military software 

0.44 20.89  

0.45 22.39  

The use of function points for schedule estimation is one of the more 

useful byproducts of function points that has been developed in recent 

years.  



   

 
146 

Software Project  

Management 
 

 

146 

Estimating Software Staffing Levels 

Rule  8  is  based  on  the  concept  of  “assignment  scope ”  or  the  

amount  of  work  for  which  one  person  will  normally  be  responsible.   

Rule  8  in cludes  software  developers,  quality  assurance, testers, 

technical writers, data base administrators, and project managers. 

Rule 8:  Estimating Software Development Staffing Levels Function  

points  divided  by  150  predicts  the  approximate  number  of  personnel 

required for the application. 

The  rule  of  one  technical  staff  member  per  150  function  points  

obviously  varies  widely based  on  the  skill  and  experience  of  the  

team  and  the  size  and  complexity  of  the application. A  corollary  rule  

can  estimate  the  number  of  personnel  required  to  maintain  the  

project during the maintenance period:  

Rule 9: Estimating Software Maintenance Staffing Levels  Function 

points divided by 750 predicts the approximate number of maintenance 

personnel required to keep the application updated. 

The  implication  of  rule  9  is  that  one  person  can  perform  minor  

updates  and  keep  about 750  function  points  of  software  operational.    

(Anther  interesting  maintenance  rule  of thumb  is:    Raising  the  

function  point  total  to  the 0.25  power  will  yield  the  approximate 

number of years that the application will stay in use.)  

Among  our  clients,  the  “best  in  class”  organizations  are  achieving  

ratios  of  up  to  3,500 function  points  per  staff  member  during  

maintenance.    These  larger  values  usually indicate  a  well-formed  

geriatric  program  including the  use  of  complexity  analysis  tools, code   

restructuring   tools,   reengineering   and   reverse   engineering   tools,   

and   full configuration control and defect tracking of aging legacy 

applications.  

Estimating Software Development Effort 

The last rule of thumb in this article is a hybrid  rule that is based on the 

combination of rule 7 and rule 8: 

Rule 10: Estimating Software Development Effort Multiply software 

development schedules by number of personnel to predict the approximate 

number of staff months of effort.  

Since  this  is  a  hybrid  rule,  an  example  can  clarify  how  it  operates.    

Assume  you  are concerned with a project of 1000 function points in size:  

• Using rule 7, or raising 1000 function points to the 0.4 power, 

indicates a schedule of about 16 calendar months.  

• Using  rule  8,  or  dividing  1000  function  points  by  150  

indicates  a  staff  of  about  6.6 full time personnel.  

• Multiplying  16  calendar  months  by  6.6  personnel  indicates  a 

total of about 106 staff months to build this project.  



 

 
147 

 

Software Effort  
Estimation 

6.8  SUMMARY 

Effort estimation is a key factor for software project success, defined 

as delivering software of agreed quality and functionality within schedule 

and budget. Traditionally, effort estimation has been used for planning and 

tracking project resources. Effort estimates are over-optimistic and there is 

a strong over-confidence in their accuracy. The mean effort overrun seems 

to be about 30% and not decreasing over time. However, the measurement 

of estimation error is problematic, assessing the accuracy of estimates. The 

strong overconfidence in the accuracy of the effort estimates is illustrated 

by the finding that, on average, if a software professional is 90% confident 

or “almost sure” to include the actual effort in a minimum-maximum 

interval, the observed frequency of including the actual effort is only 60-

70%. 

Currently the term “effort estimate” is used to denote as different concepts 

such as most likely use of effort (modal value), the effort that corresponds 

to a probability of 50% of not exceeding (median), the planned effort, the 

budgeted effort or the effort used to propose a bid or price to the client. 

This is believed to be unfortunate, because communication problems may 

occur and because the concepts serve different goals.  

6.9 REFERENCE FOR FURTHER READING 

https://www.Javatpoint.com 

https://www.Geeksforgeeks.org 

https://tutorialspoint.com 

https://datafloq.com/read/7-innovative-uses-of-clustering-algorithms/6224 

https://en.wikipedia.org/wiki/Cluster_analysis 

6.10 MODEL QUESTIONS 

1. Where are the estimates done? 

2. Brief on Software effort estimation techniques? 

3. Explain COCOMO II Model? 

4. Explain in detail about capers jones Estimating rules of thumb? 

 

 



   

 
148 

Software Project  

Management 
 

 

148 

7 
ACTIVITY PLANNING 

Unit Structure 

7.0 Objectives  

7.1 Introduction  

7.2 Objective of Activity Planning 

7.3 When to Plan?  

7.4 Project Schedules 

7.5 Projects and Activities 

 7.5.1 Defining Activities 

 7.5.2 Identifying Activities 

7.6 Sequencing and Scheduling Activities 

7.7 Network Planning Models 

7.8 Formulating to a Network Model 

7.9 Adding the Time Dimension 

7.10  The Forward Pass 

7.11 The Backward Pass 

7.12 Identifying the Critical Path 

7.13 Activity Float 

7.14 Shortening the Project Duration 

7.15 Identifying Critical Activities 

7.16 Activity-on-Arrow Networks 

7.17 Summary  

7.18 Exercises  

7.19  References 

7.0 OBJECTIVES 

After going through this unit, you will be able to:  

• Produce an activity plan for Project 

• Estimate the overall duration of a Project 

• Create a critical path and a precedence network for a Project 

7.1 INTRODUCTION  

A detailed plan for the project includes a schedule indicating the start and 

completion time for each activity which will make us to understand the 

following: 



 

 
149 

 

Activity Planning • Ensure that appropriate resources will be available precisely when 

required. 

• Avoid different activities competing for the same resources at the 

same time 

• Produce a detailed schedule showing which staffs carry out each 

activity 

• Produce a detailed plan against which actual achievement may be 

measured 

• Replan the project during its life to correct drift from the target 

To be effective, a plan must be stated as a set of targets, the achievement 

or non-achievement of which can be unambiguously measured. The 

activity plan does this by providing a target start and completion date for 

each activity (or a window within which each activity may be carried out). 

The starts and completions of activities must be clearly visible and this is 

one of the reasons why it is advisable to ensure that each and every project 

activity produces some tangible product or 'deliverable'. Monitoring the 

project’s progress is then, at least in part, a case of ensuring that the 

products of each activity are delivered on time. 

As a project progresses it is unlikely that everything will go according to 

plan. Much of the job pf project management concerns recognizing when 

something has gone wrong identifying its causes and revisiting the plan to 

mitigate its effects. The activity plan should provide a means of evaluating 

the consequences of the meeting any of the activity target dates and 

guidance as to how the plan might most effectively modified to bring the 

project back to target. We shall see that the activity plan may well also 

offer guidance as to which components of a project should be most closely 

monitored. 

7.2 OBJECTIVE OF ACTIVITY PLANNING 

In addition to providing project and resource schedules, activity planning 

aims to achieve a number of other objectives which may be summarized as 

follows.  

• Feasibility assessment: - Is the project possible within required 

timescale and resource constraints? However, it is not until we have 

constructed a detailed plan that we can forecast a completion date 

with any reasonable knowledge of its achievability 

• Resource allocation: - What are the most effective ways of 

allocating resources to the project. When should the resources be 

available? The project plan allows us to investigate relation between 

timescales and resource availability (in general, allocating additional 

resources to the project shortens its duration) and the efficacy of 

additional spending on resource procurement 

• Detailed costing: - How much will the project cost and when is that 

expenditure likely to take place? After producing an activity plan 



   

 
150 

Software Project  

Management 
 

 

150 

and allocating specific resources we can obtain more detailed 

estimates of costs and their timing  

• Motivation: - Providing targets and being seen to monitor 

achievements against the targets is an effective way of motivating 

staff. Particularly where they have been involved in setting those 

targets in the first place 

• Coordination: - When do the staff in different department needs to 

be available to work on a particular project and when do staff need 

to be transformed between projects? The project plan, particularly 

with large project involving more than a single project team. 

provides an effective vehicle for communication and coordination 

among. 

Activity planning and scheduling techniques place an emphasis on 

completing the project in a minimum time at an acceptable cost or. 

Alternatively, meeting a set target date at a minimum cost. These are not, 

in themselves concerned with meeting quality targets. which, generally 

impose constraints on the scheduling process. One effective way of 

shortening project durations is to carry out activities in parallel .Clearly we 

cannot undertake all the activities at the same time — some require the 

completion of others before they can start and there are likely to be 

resource constraints limiting how much may  be done simultaneously 

.Activity scheduling will, however, give us an indication of the cost of  

these constraints in terms of lengthening timescales and provide us with an 

indication of how timescales may be shortened by relaxing those 

constraint .  

7.3 WHEN TO PLAN?  

Planning is an ongoing process of refinement, each iteration becoming 

more detailed and more accurate than the last. Over successive iterations, 

the emphasis and purpose of planning will shift. During the feasibility 

study and project start-up, the main purpose of planning will be to 

estimate timescales and the risks of not achieving target completion dates 

or keeping within budget. As the project proceeds beyond the feasibility 

study, the emphasis will be placed upon the production of activity plans 

for ensuring resource availability and cash flow control. Throughout the 

project, until the final deliverable has reached the customer, monitoring 

and replanning must continue to correct any drift that might prevent 

meeting time or cost targets. 

7.4 PROJECT SCHEDULES 

Before work commences on a project or, possibly, a stage of a larger 

project, the project plan must be developed to the level of showing dates 

when each activity should start and finish and when and how much of 

each resource will be required. Once the plan has been refined to this level 

of detail, we call it a project schedule. Creating a project schedule 

comprises four main stages.  



 

 
151 

 

Activity Planning The first step in producing the plan is to decide what activities need to be 

carried out and in what order they are to be done. From this we can 

construct an ideal activity plan that is, a plan of when each activity would 

ideally be undertaken were resources not a constraint. 

The ideal activity plan will then be the subject of an activity risk analysis, 

aimed at identifying potential problems. This might suggest alterations to 

the ideal activity plan and will almost certainly have implications for 

resource allocation.  

The third step is resource allocation. The expected availability of 

resources might place constraints on when certain activities can be carried 

out, and our ideal plan might need to be adapted to take account of this. 

The final step is schedule production. Once resources have been allocated 

to each activity, we will be in a position to draw up and publish a project 

schedule, which indicates planned start and completion dates and a 

resource requirements statement for each activity.  

7.5 PROJECTS AND ACTIVITIES 

7.5.1 Defining Activities 

Before we try to identify the activities that make up a project it is worth 

reviewing what we mean by a project and its activities and adding some 

assumptions that will he relevant when we start to produce an activity 

plan. 

• A project is composed of a number of interrelated activities.  

• A project may start when at least one of its activities is ready to start.  

• A project will be completed when all of the activities it encompasses 

have been completed.  

• An activity must have a clearly defined start and a clearly defined 

endpoint normally marked by the production of a tangible 

deliverable. 

• If an activity requires a resource (as most do) then that resource 

requirement must be forecastable and is assumed to be required at a 

constant level throughout the duration of the activity. 

• The duration of an activity must be forecastable – assuming normal 

circumstances and the reasonable availability of resources. • Some 

activities might require that others are completed before they begin 

(these are known as precedence requirements).  



   

 
152 

Software Project  

Management 
 

 

152 

 

7.5.2 Identifying Activities 

Essentially there are three approaches to identifying the activities or tasks 

that make up a project — we shall call them the activity-based approach, 

the product-based approach and the hybrid approach.  

The activity-based approach  

The activity-based approach consists of creating a list of all the activities 

that the project is thought to involve. This might require a brainstorming 

session involving the whole project team or it might stem from an analysis 

of similar past projects. When listing activities, particularly for a large 

project, it might be helpful to subdivide the project into the main life-cycle 

stages and consider each of these separately.  

Rather than doing this in an ad hoc manner, with the obvious risks of 

omitting or double-counting tasks, a much-favoured way of generating a 

task list is to create a Work Breakdown Structure (WBS). This involves 

identifying the main (or high-level) tasks required to complete a project 

and then breaking each of these down into a set of lower-level tasks. 

Figure 6.2 shows a fragment of a WBS where the design task has been 

broken down into three tasks and one of these has been further 

decomposed into two tasks.  



 

 
153 

 

Activity Planning 

 

Activities are added to a branch in the structure if they contribute directly 
to the task immediately above — if they do not contribute to the parent 
task, then they should not be added to that branch. The tasks at each level 
in any branch should include everything that is required to complete the 
task at the higher level. 

When preparing a WBS, consideration must be given to the final level of 
detail or depth of the structure. Too great a depth will result in a large 
number of small tusks that will be difficult to manage, shallow structure 
will provide insufficient detail for project control. Each branch should, 
however, be broken down at least to a level where each leaf may be 
assigned to an individual or responsible section within the organization.  

Advantages claimed for the WBS approach include the belief that it is 
much more likely to result in a task catalogue that is complete and is 
composed of non-overlapping include task definitions activities. Note that 
it is only the leaves of the structure that comprise the list of along with 
task Input activities in the project — higher-level nodes merely represent 
collections of activities  

The WBS also represents a structure that may be relined as the project 
proceeds. In the early part of a project, we might use a relatively high-
level or shallow WBS, which can he developed as information becomes 
available, typically during the project's analysis and specification phases. 

Once the project's activities have been identified (whether or not by using 
a WBS), they need to be sequenced in the sense of deciding which 
activities need to be completed belbre others can start.  

Product-Based Approach  

It consists of producing a Product Breakdown Structure and a Product 
Flow Diagram. The PFD indicates, for each product, which other products 
are required as inputs. The PFD can therefore be easily transformed into 
an ordered list of activities by identifying the transformations that turn 
some products into others. Proponents of this approach claim that it is less 
likely that a product will be left out of a PBS than that an activity might be 
omitted from an unstructured activity list.  



   

 
154 

Software Project  

Management 
 

 

154 

This approach is particularly appropriate if using a methodology such as 
SSADM or USDP (Unified Software Development Process), which 
clearly specifies, for each step or task, each of the products required and 
the activities required to produce it.  

In the USDP, products are referred to as artifacts - see Figure 3.3 — and 
the sequence of activities needed to create them is called a workflow— see 
Figure 3.4 for an example. Some caution is needed in drawing up an 
activity network from these workflows. USDP emphasizes that processes 
are iterative. This means that it may not be possible to map a USDP 
process directly onto a single activity in a network. In Section 4.18 we saw 
how one or more iterated processes could be hidden in the single 
execution of a larger activity. All projects, whether they contain iterations 
or not, will need to have some fixed milestones or time-boxes if progress 
towards a planned delivery date is to be maintained. These larger activities 
with the fixed completion dates would be the basis of the activity network. 

Hybrid Approach  

The WBS illustrated in Figure 3.2 is based entirely on a structuring of 
activities• Alternatively, and perhaps more commonly, a WBS may be 
based upon the project products as illustrated in Figure 3.5, which is in 
turn based on a simple list of final deliverables and, for each deliverable, a 
set of activities required to produce that product. 

The degree to which the structuring is product-based or activity-based 
might be influenced by the nature of the project and the particular 
development method adopted. As with a purely activity-based WBS, 
having identified the activities we are then left with the task of sequencing 
them.  

 

A framework dictating the number of levels and the nature of each level in 

the structure may be imposed on a WBS. For example, in their MITP 



 

 
155 

 

Activity Planning methodology, IBM recommends that the following five levels should be 

used in a WBS: 

• Level 1: Project  

• Level 2: Deliverables such as software, manuals and training courses 

 

• Level 3: Components, which arc the key work items needed to 

produce deliverables, such as the modules and tests required to 

produce the system software  

• Level 4: Work-packages, which are major work items, or collections 

of related tasks, required to produce a component 

• Level 5: Tasks, which are tasks that will normally be the 

responsibility of a single person  

 



   

 
156 

Software Project  

Management 
 

 

156 

7.6 SEQUENCING AND SCHEDULING ACTIVITIES 

Throughout a project, we will require a schedule that clearly indicates 

when each of the project's activities is planned to occur and what 

resources it will need. We shall be considering scheduling in more detail 

in Chapter 8 but let us consider in outline how we might present a 

schedule for a small project. 

The chart shown has been drawn up taking account of the nature of the 

development Process (that is, certain tasks must be completed before 

others may start) and the resources that are available (for example, activity 

C follows activity B because Andy cannot work on both tasks at the same 

time). In drawing up the chart, we have therefore done two things — we 

have sequenced the tasks (that is, identified the dependencies among 

activities dictated by the development process) and scheduled them (that 

is, specified when they should take place). The scheduling has had to take 

account of the availability of staff and the ways in which the activities 

have been allocated to them. The schedule might look quite different were 

there a different number of staff or were we to allocate the activities 

differently 

 

In the case of small projects, this combined sequencing—scheduling 

approach n4j be quite suitable, particularly where we wish to allocate 

individuals to particular tas1 at an early planning stage. However, on 

larger projects it is better to separate Out the% two activities: to sequence 

the tasks according to their logical relationships and then to schedule them 

taking into account resources and other factors. Approaches to scheduling 

that achieve this separation between the logical and the physical use 

networks to model the project and it is these approaches that we will 

consider in subsequent sections of this chapter. 



 

 
157 

 

Activity Planning 7.7 NETWORK PLANNING MODELS 

These project scheduling techniques model the project's activities and their 

relation as a network. In the network, time flows from left to right. These 

techniques were originally developed in the 1950s — the two best known 

being CPM (Critical Path Method) and PERT (Program Evaluation 

Review Technique).  

Both of these techniques used an activity-on-arrow approach to visualizing 

the project as a network where activities are drawn as arrows joining 

circles, or nodes, which represent the possible start and/or completion of 

an activity or set of activities. More recently a variation on these 

techniques, called precedence networks, has become popular. This method 

uses activity-on-node networks where activities are represented as nodes 

and the links between nodes represent precedence (or sequencing) 

requirements. This latter approach avoids some of the problems inherent 

in the activity-on-arrow representation and provides more scope for easily 

representing certain situations. It is this method that is adopted in the 

majority of computer applications currently available. These three 

methods are very similar and it must be admitted that many people use the 

same name (particularly CPM) indiscriminately to refer to any or all of the 

methods.  

 

7.8 FORMULATING TO A NETWORK MODEL 

The first stage in creating a network model is to represent the activities 

and their interrelationships as a graph. In activity-on-node we do this by 

representing activities as nodes (boxes) in the graph — the lines between 

nodes represent dependencies. 



   

 
158 

Software Project  

Management 
 

 

158 

 

Constructing precedence networks: 

Before we look at how networks are used, it is worth spending a few 

moments considering some rules for their construction. A project network 

should have only one start node Although it is logically possible to draw a 

network with more than one starting node, it is undesirable to do so as it is 

a potential source of confusion. In such cases (for example, where more 

than one activity can start immediately the project starts) it is normal to 

invent a 'start' activity which has zero duration but may have an actual 

start date. A project network should have only one end node The end node 

designates the completion of the project, and a project may finish only 

once! Although it is possible to draw a network with more than one end 

node. it will almost certainly lead to confusion if this is done. Where the 

completion of a project depends upon more than one 'final' activity it is 

normal to invent a 'finish' activity. A node has duration A node represents 

an activity and, in general, activities take time to execute. Notice. 

however, that the network in Figure 3.7 does not contain any reference to 

durations. This network drawing merely represents the logic of the project 

- the rules governing the order in which activities are carried out 

Links normally have no duration Links represent the relationships between 

activities In Figure 3.9 installation cannot start until program testing is 

complete, program testing cannot start until both coding and data take-on 

have been completed. 

Precedents are the immediately preceding activities in figure6,9, the 

activity 'program test' cannot start until both 'Code' and 'Data take-on' have 

been completed and activity 'Install' cannot start until Program test' has, 

finished. 'Code' and 'Data take-on' can therefore be said to be precedents 

of 'Program test'. And 'Program test' is a precedent of 'Install'. Note that we 

do not speak of 'Code' and 'Data take-on' as precedents of 'brush' - that 

relationship is implicit in the previous statement. 



 

 
159 

 

Activity Planning 

 

Time moves from left to right If at all possible, networks are drawn so that 

time moves from left to right. It is rare that this convention needs to be 

flouted, but some people add arrows to the lines to give a stronger visual 

indication of the time flow of the project  

fig.3.10 demonstrates a loop in a network. A loop is an error in that it 

represents a situation that cannot be occurred in practice_ While loops, in 

the sense of iteration, may occur in practice_ they cannot be directly 

represented in a project network. 

 

Although it is easy to see the loop in this simple network fragment, very 

large networks can easily contain complex loops which are difficult to 

spot when they arc initially constructed. Fortunately, all network planning 

applications will detect loops and generate error messages when they are 

found. A network should not 'twain dangles A dangling activity such as 

'Write user manual' in Figure 3.1 I should not exist as it is likely to lead to 

errors in subsequent analysis. Indeed, in many cases, dangling activities 

indicate errors in logic when activities are added as an afterthought. If, in 

Figure 3.1 I, we mean to indicate that the project is complete once the 

software has been installed and the user manual written then we should 

redraw the network with a final completion activity — which, at least in 

this case, is probably a more accurate representation of what should 

happen. The redrawn network is shown in Figure 3.12. 



   

 
160 

Software Project  

Management 
 

 

160 

 

Representing Lagged Activities 

We might come across situations where we wish to undertake two 

activities in parallel, so long as there is a lag between the two. We might 

wish to document amendments to a program as it is being tested — 

particularly if evaluating a prototype. In such a case, we could designate 

an activity 'test and document amendments'. This Would, however, make 

it impossible to show that amendment recording could start, say, one day 

after testing had begun and finish a little after the completion of testing. 

Where activities can occur in parallel with a time lag between them, we 

represent the lag with a duration on the g, e linking arrow as shown in 

Figure 3.13. This indicates that documenting amendments can start one 

day after the start of prototype testing and will be completed two days 

after prototype testing is completed. 

 

Hammock Activities  

Hammock activities are activities which_ in themselves, have zero 

duration but are assumed to start at the same time as the first `ham 

mocked' activity and to end at the same as the last one. They are normally 



 

 
161 

 

Activity Planning used for representing overhead costs or other resources that will be 

incurred or used at a constant rate over the duration of a set of activities.  

Labelling Conventions  

There are a number of differing conventions that have been adopted for 

entering information on an activity -on-node network. The one adopted 

here is shown on the left and is based on the British standard BS4335 

7. ADDING THE TIME DIMENSION 

Having created the logical network model indicating what needs to be and 

the relationships between those activities, we are now ready to start 

thinking about when each activity should be undertaken. 

The critical path approach is concerned with two primary objectives: 

planning the project in such a way that if is completed as quickly as 

possible: and identifying those -activities where a delay is likely to affect 

the overall end date of the project or later activities*start dates the method 

requires that for each activity we have estimate of its duration. The 

network is then analysed by carrying out a forward pass to calculate the 

earliest dates at which activities may commence, and the project be 

completed, and a backward pass, to calculate the latest start dates for 

activities and the critical path. 

In practice, we would use a software application to carry out these 

calculations; for anything but the smallest of projects. It is important, 

Though, that we understand how the calculation; are carried out in order to 

interrupt the results correctly and understand the limitations of the method. 

7.10 THE FORWARD PASS 

The forward pass is carried out to calculate the earliest dates on which 

each activity. May be started and completed. 

Where an actual start date is known, the calculations may be carried out 

using actual dates. Alternatively, we can use day or week numbers and 

that is the approach we shall adopt here, by convention, dates the end of a 

period and the project is therefore shown as starting at the end of week 

zero (or the beginning of week 1). 

7.11 THE BACKWARD PASS 

The second stage in the analysis of a critical path network is to carry out a 

backward pass to calculate the latest date at which each activity may be 

started and finished without delaying the end date of the project. In 

calculating the latest dates, we assume that the latest finish date for the 

project is the same as the earliest finish date - that is, we wish to complete 

the project as early as possible.  



   

 
162 

Software Project  

Management 
 

 

162 

 

Figure 3.16 illustrates our network after carrying out the backward pass. 

The latest activity dates are calculated as follows.  

 

• The latest completion date for activities G and H is assumed to be 

week 13.  



 

 
163 

 

Activity Planning • Activity H must therefore start at week 11 at the latest (13 – 2) and 

the latest start date for activity G is week 10 (13 - 3). 

• The latest completion date for activities C and D is the latest date at 

which activity II must start that is week 11 They therefore have 

latest start dates of week 8 (11 - 3) and week 7 (11 respectively.  

• Activities E and F must be completed week 10 so their earliest start 

dates are weeks 7 (10 - 3) and 0 (10 - 10) respectively.  

• Activity B mug be completed by week 7 (the latest start date for 

both activities D and E) and so its latest start is week 3 (7 - 4). 

• Activity A must be completed by week 8 (the latest start date for 

activity C) so its latest start is week 2 (8 — 6). 

• The latest start date for the project start is the earliest of the latest 

start dates for activities A, B and F.  

This is week zero. This is, of course, not very surprising since it tells us 

that if the project does not start on time it won't finish on time. 

7.12 IDENTIFYING THE CRITICAL PATH 

There will be at least one path through the network (that is, one set of 

successive activities) that defines the duration of the project. This is 

known as the critical park Any delay to any activity on this critical path 

will delay the completion of the project-The difference between an 

activity's earliest start date and its latest start date (or. equally, the 

difference between its earliest and latest finish dates) is known as the 

activity's float — it is a measure of how much the start or completion of an 

activity may be delayed without affecting the end date of the project. Any 

activity with a float of zero is critical in the sense that any delay in 

carrying out the activity will delay the completion date of the project as a 

whole. There will always be at least one pad through the network joining 

those critical activities — this path is known as the critical path and is 

shown bold in Figure 3.17.  

The significance of the critical path is two-fold. 

• In managing the project, we must pay particular attention to 

monitoring activities on the critical path so that the effects of any 

delay or resource unavailability are detected and corrected at the 

earliest opportunity. 



   

 
164 

Software Project  

Management 
 

 

164 

 

• In planning the project, it is the critical path that we must shorten if 

we are to reduce the overall duration of the project. 

 Figure 3.17 also shows the activity span. This is the difference between 

the earliest start date and the latest finish date and is a measure of the 

maximum time allowable for the activity. However, it is subject to the 

same conditions of interpretation as activity float, which is discussed in 

the next section. 

7.13 ACTIVITY FLOAT 

Although the total float is shown for each activity, it really 'belongs' to a 

path through the network. Activities A and C in Figure 3.17 each have 2 

weeks' total float. If, however, activity A uses up its float (that is, it is not 

completed until week 8) then activity B will have zero float (it will have 

become critical). In such circumstances, it may be misleading and 

detrimental to the project's success to publicize total float!  

There are a number of other measures of activity float, including the 

following:  

• Free float: The time by which an activity may be delayed without 

affecting any subsequent activity. It is calculated as the difference 

between the earliest completion date for the activity and the earliest 

start date of the succeeding activity. This might be considered a 

more satisfactory measure of float for publicizing to the staff 

involved in undertaking the activities 

• Interfering float: The difference between total float and free float. 

This is quite commonly used, particularly in association with the 

free float. Once the free float has been used (or if it is zero), the 



 

 
165 

 

Activity Planning interfering float tells us by how much the activity may be delayed 

without delaying the project end date — even though it will delay 

the start of subsequent activities. 

7.14 SHORTENING THE PROJECT DURATION 

If we wish to shorten the overall duration of a project, we will normally 

consider attempting to reduce durations. In many cases, this can be done 

by applying more resources to the task - working overtime or procuring 

additional staff, for example. The critical path indicates where we must 

look to save time - if we are trying to bring forward the end date of the 

project, there is clearly no point in attempting to shorten non-critical 

activities. Referring to Figure 3.17, it can be seen that we could complete 

the project in week 12 by reducing the duration of activity F by one week 

(to 9 weeks). 

As we reduce activity times along the critical path, we must continually 

check for any new critical path emerging and redirect our attention where 

necessary.  

There will come a point when we can no longer safely, or cost-effectively, 

reduce critical activity durations in an attempt to bring forward the project 

end date. Further savings, if needed, must be sought in a consideration of 

our work methods and by questioning the logical sequencing of activities. 

Generally, time savings are to be found by increasing the amount of 

parallelism in the network and the removal of bottlenecks (subject always, 

of course, to resource and quality constraints). 

7.15 IDENTIFYING CRITICAL ACTIVITIES 

The critical path identifies those activities which are critical to the end 

date of the project; however, activities that are not on the critical path may 

become critical. As the project proceeds, activities will invariably use up 

some of their float and this will require a periodic recalculation of the 

network. As soon as the activities along a particular path use up their total 

float then that path will become a critical path and a number of hitherto 

non-critical activities will suddenly become critical. 

It is therefore common practice to identify near-critical paths — those 

whose lengths are within, say, 10-20% of the duration of the critical path 

or those with a total float of less than, say, 10% of the project's 

uncompleted duration.  

The importance of identifying critical and near-critical activities is that it 

is they that arc most likely to be the cause of delays in completing the 

project. We shall see, in the next three chapters, that identifying these 

activities is an important step in risk analysis, resource allocation and 

project monitoring. 

 



   

 
166 

Software Project  

Management 
 

 

166 

7.16 ACTIVITY-ON-ARROW NETWORKS 

The developers of the CPM and PERT methods both originally used 

activity-on-arrow network Although now less common than activity-on-

node networks, they are still used and introduce an additional useful 

Concept — that of events. We will therefore take a brief look at how they 

are drawn and analysed using the same project example shown in Table 

3.1.  

In activity-on-arrow networks activities are represented by links (or 

arrows) and the nodes represents events of activities (or groups of 

activities) starting or finishing. Figure 3.18 illustrates our previous 

example (see Figure 3.14) drawn as an activity-on-arrow network. 

 

Activity-On-Arrow Network Rules and Conventions  

A project network may have only one start node. This is a requirement of 

activity-on-arrow network rather than merely desirable as is the case with 

activity-on-node networks. 

A project network may have only one end node Again this is a 

requirement for activity-on-arrow network  

 

A link has duration: A link represents an activity and, in general, activities 

take time to execute. Notice, however, that the network in Figure 3.18 



 

 
167 

 

Activity Planning does not contain any reference to durations. 'The links are not drawn in 

any way to represent the activity durations. The network drawing merely 

represents the logic of the project, the rules governing the order in which 

activities are to be carried out. 

Nodes have no duration Nodes are events and, as such, are instantaneous 

points in time. The source node is the event of the project becoming ready 

to start and the sink node is the event of the project becoming completed. 

Intermediate nodes represent two simultaneous events -- the event of all 

activities leading into a node having been completed and the event of all 

activities leading out of that node being in a position to be started.  

In Figure 3.19, node 3 is the event that both 'coding' and 'data take-on' 

have been completed and activity 'program test' is free to start. Installation 

may be started only when event 4 has been achieved, that is as soon as 

'program test' has been completed. 

Time moves from left to right as with activity-on-node networks, activity-

on-arrow networks are drawn, if at all possible, so that time moves from 

left to right. 

Nodes are numbered sequentially There are no precise rules about node 

numbering, but nodes should be numbered so that head nodes (those at the 

'arrow' end of an activity) always have a higher number than tail events 

(those at the 'non-arrow' end of an activity). This convention makes it easy 

to spot loops. A network may not contain loops Figure 6,2() demonstrates 

a loop in an activity-on-arrow network. As discussed in the context of 

precedence networks, loops are either an error of logic or a situation that 

must be resolved by itemizing iterations of activity groups. 

 

A network may not contain dangles A dangling activity, such as 'Write 

user manual' in Figure 3.21, cannot exist, as it would suggest there are two 

completion points for the project. If, in Figure 3.21, node 5 represents the 

true project completion point and there are no activities dependent on 

activity 'Write user manual', then the network should be redrawn so that 

activity 'Write user manual' starts at node 2 and terminates at node 5 — in 

practice, we would need to insert a dummy activity between nodes 3 and 

5. In other words, all events, except the first and the last, must have at 

least one activity entering them and at least one activity leaving them and 

all activities must start and end with an event. 



   

 
168 

Software Project  

Management 
 

 

168 

 

 



 

 
169 

 

Activity Planning 

 
Using Dummy Activities 

When two paths within a network have a common event although they are, 

in other respects, independent, a logical error such as that illustrated in 

Figure 3.23 might occur. Suppose that, in a particular project, it is 

necessary to specify a certain piece of hardware before placing an order 

for it and before coding the software. Before coding the software, it is also 

necessary to specify the appropriate data structures, although clearly, we 

do not need to wait for this to be done before the hardware is ordered. 

Figure 3.23 is an attempt to model the situation described above, although 

it is incorrect in that it requires both hardware specification and data 

structure design to be completed before either an order may be placed, or 

software coding may commence. We can resolve this problem by 

separating the two (more or less) independent paths and introducing a 

dummy activity to link the completion of 'specify hardware' to the start of 

the activity 'code software'. This effectively breaks the link between data 

structure design and placing the order and is shown in Figure 3.24. 

 

Dummy activities, shown as dotted lines on the network diagram, have a 

zero duration and use no resources. They are often used to aid in the 

layout of network drawings as in Figure 3.25. The use of a dummy activity 

where two activities share the same start and end nodes makes it easier to 

distinguish the activity endpoints. 



   

 
170 

Software Project  

Management 
 

 

170 

 

These are problems that do not occur with activity-on-node networks. 

Representing Lagged Activities  

Activity-on-arrow networks are less elegant when it comes to representing 

lagged parallel activities. We need to represent these with pairs of dummy 

activities as shown in Figure 3.2 Where the activities are lagged because a 

stage in one activity must be completed before the other may proceed, it is 

likely to be better to show each stage as a separate activity. 

 

Activity Labelling  

There are several differing conventions that have been adopted for 

entering information on an activity-on-arrow network. Typically, the 

diagram is used to record information about the events rather than the 

activities - activity-based information (other than labels or descriptions) is 

generally held on a separate activity table.  

One of the more common conventions for labelling nodes, and the one 

adopted here, is to divide the node circle into quadrants and use those 

quadrants to show the event number, the latest and earliest dates by which 

the event should occur, and the event slack (which will be explained later). 

Network Analysis 

Analysis proceeds in the same way as with activity-on-node networks, 

although the discussion places emphasis on the events rather than activity 

start and completion times.  



 

 
171 

 

Activity Planning The forward pass is carried out to calculate the earliest date on which each 

event may be achieved and the earliest dates on which each activity may 

be started and completed. The earliest date for an event is the earliest date 

by all activities upon which it depends can be completed. Using Figure 

6.18 and Table 6.1, the calculation proceeds according to the following 

reasoning.  

• Activities A, B and F may start immediately, so the earliest date for 

event 1 is zero and the earliest start date for these three activities is 

also zero.  

• Activity A will take 6 weeks, so the earliest it can finish is week 6 

(recorded in the activity table). Therefore, the earliest we can 

achieve event 2 is week 6.  

• Activity B will take 4 weeks, so the earliest it can finish and the 

earliest we can achieve event 3 is week 4. 

 

• Activity F will take 10 weeks, so the earliest it can finish is week 10 

— we cannot, however, tell whether or not this is also the earliest 

date that we can achieve event 5 since we have not, as yet, 

calculated when activity E will finish.  

• Activity E can start as early as week 4 (the earliest date for event 3) 

and, since it is forecasted to take 3 weeks, will be completed, at the 

earliest, at the end of week 7. 

• Event 5 may be achieved when both E and F have been completed, 

that is, week 10 (the later of 7 and 10).  

• Similarly, we can reason that event 4 will have the earliest date of 

week 9. This is the later of the earliest finish for activity D (week 8) 

and the earliest finish for activity C (week 9). 

• The earliest date for the completion of the project, event 6, is 

therefore the end of week 13 — the later of 11 (the earliest finish for 

H) and 13 (the earliest finish for G).  



   

 
172 

Software Project  

Management 
 

 

172 

 

The results of the forward pass are shown in Figure 3.27 and Table 3.3. 

The backward pass the second stage is to carry out a backward pass to 

calculate the latest date at which each event may be achieved, and each 

activity started and finished, without delaying the end date of the project. 

The latest date for an event is the latest date by which all immediately 

following activities must be started for the project to be completed on 

time. As with activity-on-node networks, we assume that the latest finish 

date for the project is the same as the earliest finish date — that is, we 

wish to complete the project as early as possible. Figure 3.28 illustrates 

our network and Table 3.4 the activity table after carrying out the 

backward pass — as with the forward pass, event dates are recorded on the 

diagram and activity dates on the activity table. 

 

 

Identifying the critical path, The critical path is identified in a way similar 

to that used in activity-on-node networks. We do, however, use a different 

concept, that of slack, in identifying the path. Slack is the difference 

between the earliest date and the latest date for an event — it is a measure 

of how late an event may be without affecting the end date of the project. 

The critical path is the path joining all nodes with a zero slack  

(Figure 3.29). 



 

 
173 

 

Activity Planning 

 

7.17 SUMMARY 

In this chapter, we have discussed the use of the critical path method and 
precedence networks to obtain an ideal activity plan. This plan tells us 
about the order in which we should execute activities and the earliest and 
latest we can start and finish them. 

These techniques help us to identify which activities are critical to meeting 
a target completion date. 

In order to manage the project, we need to turn the activity plan into a 
schedule that will specify precisely when each activity is scheduled to start 
and finish. Before we can do this, we must consider what resources will be 
required and whether or not they will be available at appropriate times. As 
we shall see, the allocation of resources to an activity may be affected by 
how we view the importance of the task and the risks associated with it. In 
the next two chapters we look at these aspects of project planning before 
we consider how we might publish a schedule for the project. 

7.18 EXERCISES  

1. Draw an activity network using either activity-on-node or activity-
on-arrow network conventions for each of the following projects: 

• Redecorating a room 

• Choosing and purchasing a desktop computer 

• Organizing and carrying out a survey of users' opinions of an 
information system  

2. If you have access to a project planning application, use it to 
produce a project plan for the IOE annual maintenance contracts 
project. Base your plan on that used for Exercise 3.2 and verify that 
your application reports the same information as you calculated 
manually when you did the exercise. 

3. Based on your answer to Exercise 3.2, discuss what options Amanda 
might consider if she found it necessary to complete the project 
earlier than day 104. 



   

 
174 

Software Project  

Management 
 

 

174 

4. Create a precedence activity network using the following details: 

5. Calculate the earliest and latest start and end dates and the float 
associated with each activity in the network you have created for 
further exercise 4 above. From this identify the critical path. 

6. Draw up a precedence activity network for the following scenario: 
The specification of an ICT application is estimated as likely to take 
two weeks to complete. When this activity has been completed, 
work can start on three software modules, A, B and C. 
Design/coding of the modules will need 5, 10 and 10 days 
respectively. Modules A and B can only be unit-tested together as 
their functionality is closely associated. This joint testing should 
take about two weeks. Module C will need eight days of unit testing. 
When all unit testing has been completed, integrated system testing 
will be needed, taking a further three weeks. This testing will be 
based on the functionality described in the specification and will 
need 10 days of planning. 

7. For the activity network in further exercise 6 above, derive the 
earliest and latest start dates for each activity and the earliest and 
latest finish dates. Work out the shortest project duration. If only two 
software developers were available for the design and coding of 
modules, what effect would this have on the project duration? 

8. What are the limitations of the precedence and CPM activity 
network notations? 

9. Consider a software project with five tasks T1-T5. Duration of the 
five tasks in weeks is 3, 2, 3, 5, and 2 respectively. T2 and T4 can 
start when T1 is complete. T3 can start when T2 is complete. T5 can 
start when both T3 and T4 are complete. Draw the CPM network 
representation of the project. When is the latest start date of the task 
T3? What is the float time of the task T4? Which tasks are on the 
critical path? 

10. Consider a software project with five tasks that are denoted by T1, 
T2, T3, T4 and TS, Duration of these five tasks (in days) are 15, 10, 
12, 25 and 10, respectively. T2 and T4 can start when T1 is 
complete. T3 can start when T2 is complete. TS can start when both 
T3 and T4 are complete. What will be the latest start date of the task 
T3? What is the slack time of the task T4? 

11. Why is it necessary for a project manager to decompose the tasks of 
a project using Work breakdown structure (WBS) into finer level 
tasks before constructing the task schedule? To what granularity 
level should the tasks be decomposed? Explain your answer. 

12. For each of the following questions, exactly one option is correct. 
Select the appropriate option. 

(i) Which one of the following charts would be the most useful to 
decompose the project activities into smaller tasks that are more 
meaningfully managed? 

(a) PERT chart  



 

 
175 

 

Activity Planning (b) GANTT chart 

(c) Task network representation  

(d) Work breakdown structure 

(ii) Which one of the following is the critical path for the activity 
network given below? 

(a) A, B, F,H, G, land L (b) A, B,KH,I and L 

(c) A,C,D,J, K and L (d) A, C,D,G,K and L 

(iii) Consider a portion of the network diagram given below. What is the 
LF of activity F? 

(a) 10 (b) 11 

(c) 16 (d) 17 

(iv) In a PERT chart, in which one of the following situations is a 
dummy activity required? 

(a) In the PERT chart, two or more activities have the same 
ending events. 

(b) The PERT chart contains two or more activities that have 
identical starting and ending events. 

(c) In the PERT chart, two or more activities have different 
ending events. 

(d) In the PERT chart, two or more activities have the same 
starting events 

(v) Using the data in the following table, what is the total project 
duration? 

(a) 20 (b) 27 

(c) 37 (d) 44 

(vi) PERT method differs from CPM in which one of the following 
aspects. 

(a) PERT uses statistical time durations whereas CPM uses 
deterministic time durations, 

(b) PERT uses dummy activities whereas CPM does not. 

(c) PERT uses free float, whereas CPM uses total float in critical 
path calculations. 

(d) PERT uses activity on arc whereas CPM uses activity on node 
networks. 

(vii) Which one of the following is true of a critical path in a PERT 
chart? 

(a) It is the path having maximum number of tasks. 

(b) It is the shortest path in terms of time. 

(c) It is the longest path in terms of time. 

(d) It is the path with the largest amount of slack time. 



   

 
176 

Software Project  

Management 
 

 

176 

(viii) Which one of the following statements regarding critical paths in a 
PERT chart is true? 

(a)  A critical path through a PERT chart is any path through the 
chart that contains the least number of edges. 

(b) Some activities on the critical path can have slack. 

(c) Every PERT chart has exactly one critical path. 

(d) It is possible that in the PERT chart for a project, there can be 
multiple critical paths, all having the same duration. 

(ix) In a PERT chart, an activity has an early start (ES) of 3 days, a late 
start (LS) of 13 days, an early finish (EF) of 16 days and a late finish 
(LF) of 26 days. Which one of the following can be inferred 
regarding this activity? 

(a) It is on the critical path. (b) It is not progressing well. 

(c) It is progressing well. (d) It is not on the critical path. 

(x) Suppose you have estimated the nominal duration of your project to 
be 4 months and you have planned to complete the work by 
deploying three developers. However, the customer request you to 
complete the work in 3 months. In this case, what will be the man-
power requirement as per Putnam's results? 

(a) 6 (b) 8 

(c) 10 (d) 20 

Answer questions (xi) and (xii) for a project whose activities, their 
precedence ordering, estimated time for completion are given in the 
following table. 

(xi) Which one of the following sequence of activities is on the critical 
path? 

(a) A-E-F  (b) A-B-C-G 

(c) A-B-C-D-F (d) A-B-F 

(xii) Which one of the following paths has the greatest slack time? 

 (e) A-E-F          (f) A-B-C-G 

 (g) A-B-C-D-F (h) A-B-F 

7.19 REFERENCES 

a) Software Project Management by Bob Hughes, Mike Cotterell, Rajib 
Mall, Tata McGraw Hill, 6th Edition, 2018. 

b) Project Management and Tools & Technologies – An overview by 
Shailesh Mehta, Shroff Publishers, 1st Edition, 2017. 

c) Software Project Management by Walker Royce, Pearson Publication, 
2005 

 



   
177 

8 
RISK MANAGEMENT 

Unit Structure 

8.0 Objectives  

8.1 Introduction  

8.2 Risk  

8.3 categories of Risk  

8.4 Risk Management Approaches 

 8.4.1 Reactive approaches 

 8.4.2 Proactive approach 

8.5 A framework for dealing with Risk 

8.6 Risk Identification 

8.7 Risk Assessment 

8.8 Risk Planning 

8.9 Risk Management 

 8.9.1 Contingency 

 8.9.2 Deciding on the risk action 

 8.9.3 Creating and maintaining the risk register 

8.10 Evaluating Risk to the schedule 

8.11 Boehm’s Top 10 Risks and counter Measures 

 8.11.1 Risk Mitigation Monitoring, and Management 

8.12 Applying the PERT Technique  

 8.12.1 Using expected duration 

 8.12.2 Activity standard deviation 

 8.12.3 The likelihood of meeting targets 

 8.12.4 Calculating the standard deviation of each project event 

 8.12.5 Calculating the z values 

 8.12.6 Calculating z values to probabilities 

 8.12.7 Advantages of PERT 

8.13 Monte Carlo simulation 

8.14 Critical chain concepts 

 8.14.1 Deriving most likely activity durations 

 8.14.2 using latest start dates for activities 

 8.14.3 Inserting project and feeder buffers 

 8.14.4 Project execution  

8.15 Summary  

8.16 Exercises  

8.17  References. 



   

 
178 

Software Project  

Management 
 

 

178 

8.0 OBJECTIVES 

After going through this unit, you will be able to: 

• Identify the factor putting a project at a risk 

• Categorize and prioritize actions for risk elimination or containment 

• Quantify the likely effect of risk on project timescales. 

8.1 INTRODUCTION  

In an earlier chapter we had seen that how the software for the new annual 

maintenance contracts application was to be produced which included 

estimation of how long each task would take. But suppose if one of the 

developer leaves for better paid job then it might further delay the process 

and getting the replacement immediately for the vacant post is bit difficult 

which will impact the overall growth. Such type of activities is termed as 

“Risks” which are uncertain about its occurrences and one has to be ready 

to take it and face the consequences of it which can be sometimes fruitful. 

8.2 RISK 

• PM-BOK defines risk as 'an uncertain event or condition that, if it 

occurs, has a positive or negative effect on a project's objectives'. 

• The UK government sponsored project management standard, 

defines risk as 'the chance of exposure to the adverse consequences 

of future events.  

The key elements of risk as follow 

• It relates to the future The future is inherently uncertain. Some 

things which seem obvious project is over, for example that the costs 

relate to the future The future is inherently uncertain Some things 

which seem obvious when project is over, for example that the costs 

were underestimated or that a new technology was overly difficult to 

use, might not have been so obvious during planning. 

• It involves cause and effect For example, a cost over-run might be 

identified as a risk, but cost over-run describes some damage, but 

does not say what causes it Is it, for example, an inaccurate estimate 

of effort, the use of untrained staff, or a poor specification Both the 

cause (or hazanf, such as 'inexperienced staff and a particular type of 

negative outcome such as lower productivity. should be defined for 

each risk 

 

 

 



 

 
179 

 

Risk Management 8.3 CATEGORIES OF RISK 

• An ICT project management is normally given the objective of 

installing the required application by a specified deadline and within 

an agreed budget. Other objective might be set, especially with 

regard to quality requirements 

• Project risks are those that could prevent the achievement of the 

objective given to the project manager and the project team. 

 

• In this figure ‘Actors’ refers to all the people involved in the 

development of the application in question. A typical risk in this 

area is that high staff turnover leads to the appropriateness of the 

technologies and to possible faults with them. 

• Structure describes the management structured and system, 

including those affecting planning and control. 

• Task relates to the work planned. For instance ,the complexity of the 

work might lead to delays because of the additional time required 

integrate the large number of components 

• All boxes are interlinked .Risk often arise from the relationships 

between factors –for example technology and people. 

8.4 RISK MANAGEMENT APPROACHES 

Risk management approaches can broadly be classified into reactive and 

proactive approaches. The latter approaches are much more effective in 

risk handling. And therefore, used wherever possible. 

Reactive approaches 

• Reactive approaches take no action until an unfavorable event 

occurs. Once an unfavorable event  occur these approaches try to 

contain the adverse effects associated with the risk and take steps to 

prevent future occurrence of the same risk events 



   

 
180 

Software Project  

Management 
 

 

180 

• An example of such a risk management strategy can be the 

following Consider a project in which the server hosting the project 

data crashes. Once this risk event has occurred, the team members 

may put best effort to recover the data and also initiate the practice 

of taking regular backups so that in future such a risk event does not 

recur.  

Proactive approaches 

• The proactive approaches try to anticipate the possible risks that the 

project is susceptible. After identifying   the possible risk, actions 

are taken to eliminate the risks. If a risk cannot be avoided, these 

approaches suggest making   plans to contain the effect of the risk . 

• For example, if manpower turnover is anticipated (some personnel 

may leave the project), then thorough documentation may be 

planned Also, more than one developer may work on a work item 

and also some stand by man power may be planned Obviously  

proactive approaches incur lower cost and time overruns when ttd 

events occur and, therefore, are much more preferred by scam: 

However, when some risks cannot be anticipated, a reactive 

approach is usually followed. 

8.5 FRAMEWORK FOR DEALING WITH RISK 

(i) Risk identification 

(ii) Risk analysis and prioritization 

(iii)  Risk planning 

 (iv) Risk monitoring 

Steps (i) to (iii) above will probably be repeated. When risks that could 

prevent a project success are identified plans can be made to duce or 

remove their threat. The plans are then reassessed to ensure that the 

original risks are reduced sufficiently, and no new risks made 

inadvertently introduced take the risk that staff inexperience with a new 

technology could lead to delays in software development. To reduce this 

risk, consultant’s expert in the new technology might be recruited. 

However, the use of consultants might introduce the new risk that 

knowledge about the new technology is not transferred to the permanent 

staff, making subsequent software maintenance problematic. Having 

identified this new risk further risk reduction activities can be planned. 

8.6 RISK IDENTIFICATION 

The two main approaches to the identification of risks are the use of 

checklists and brainstorming 



 

 
181 

 

Risk Management 

 

• Checklist  

Checklists are simply lists of the risks that have been found to occur 

regularly in software development projects. A specialized list of software 

development ricks by Barry Boehm.  In a modified version Ideally a group 

of representative project stakeholders examines a checklist identifying 

risks applicable to their project. Often the checklist suggests potential 

countermeasures for each risk 

• Brainstorming 

• Ideally, representatives of the main stakeholders should be 

brought together once some kind of prelim in plan has been 

drafted, they then identify, using their individual knowledge of 

different parts of the pro the problems that might occur. This 

collaborative approach may generate a sense of ownership in 

the project  

• Brainstorming might be used with Brigette's Brightmouth 

payroll implement project as she realizes that there are aspects 

of college administration of which is unaware. 

 

 



   

 
182 

Software Project  

Management 
 

 

182 

8.7 RISK ASSESSMENT 

A common problem with risk identification is that a list of risks is 

potentially endless A way is needed of distinguishing the damaging and 

likely risks. This can be done by estimating the risk exposure for each 

using the formula 

Risk exposure = (potential damage) X (probability of occurrence) 

Using the most rigorous but not necessarily the most practical approach, 

the potential damage would be assessed as a money value Say project 

depended on a data center vulnerable to fire It might be estimated that if a 

fire occurred a new computer configuration could be established for 

£500,000 I might be in estimated that where the computer is located there 

is a fin 1000 chance  of a fire actually happening a probability of 0.001 

The risk exposure in this case would he 

500,000 X 0.001 

8.8 RISK PLANNING 

Having identified the major risks and allocated priorities, the task is to 

decide how to deal with them. The choices discussed will be 

• Risk acceptance 

• Risk avoidance 

• Risk reduction and mitigation 

• Risk transfer 

• Risk acceptance 

This is the do-nothing option We will already in the risk 

prioritization process, have decided to ignore some risk in order to 

concentrate on the more likely damaging .We could decide that the 

damage inflicted by some risk would be less than the cost of action 

that might reduce the probability of a risk happening 

• Risk avoidance 

Some activities   may be prone to accident that is best to avoid them 

altogether. If you are worried about   shark they don’t   go into the 

water. For example given all the problems with developing software 

solution from scratch manager might decide to retain existing 

clerical method or to buy an off-the-shelf solution. 

• Risk reduction and mitigation 

Risk mitigation can sometime be distinguished from risk reduction. 

risk reduction  attempt to reduce likelihood of the risk occurring 

.Risk mitigation taken to ensure that the impact of the risk is leased 



 

 
183 

 

Risk Management when its occur. for example, taking ,taking regular backup of data 

storage would reduce the impact of data corruption but not its 

likelihood .Mitigation is closely associated with contingency 

planning which is discussed presently. 

• Risk Transfer 

In this case the risk is transferred to other person or 

organization you might the except the supplier to quote a 

higher figure to cover the risk that the project takes longer than 

the average excepted time. 

8.9 RISK MANAGEMENT 

• Contingency 

Risk reduction activities would appear to have only a small impact on 

reducing the probability of some risks, for example staff absence through 

illness. While some employers encourage their employees to adopt a 

healthy lifestyle, it remains likely that some project team members will at 

some point be brought down by minor illnesses such as flu. These kinds of 

risk need a contingency plan. This is a planned action to be carried out if 

the particular risk materializes. If a team member involved in urgent work 

were ill then the project manager might draft in another member of staff to 

cover that work. 

The preventative measures that were discussed under the 'Risk reduction' 

heading above will usually incur some cost regardless of the risk 

materializing or not. The cost of a contingency measure will only be 

incurred if the risk materializes. However, there may be some things that 

have to be done for the contingency action to be feasible. An obvious 

example is that back-ups of a database must be taken if the contingency 

action when the database is corrupted is to restore it from back-ups. There 

would be a cost associated with taking the back-ups. 

• Deciding on the risk actions 

I. Five generic responses to a risk have been discussed above. 

For each actual risk, however, specific actions likelihood of 

particular risks; see, for example, Bochum’s 'top ten' software 

engineering risks in Table 7.1. Have to be planned. In many 

cases experts have produced lists recommending practical 

steps to cope with the likelihood of a particular risk.  

II. Whatever the countermeasures that are considered, they must 

be cost-effective. On those occasions where a risk exposure 

value can be calculated as a financial value using the (value of 

damage) X (probability of occurrence) formula-recall the cost-

effectiveness of a risk reduction action can be assessed by 

calculating the risk reduction leverage (RRL). 



   

 
184 

Software Project  

Management 
 

 

184 

III. Risk reduction leverage = (REbefore-REafter)/ (Cost of the risk 

reduction) REbefore is the risk exposure, as explained, before 

risk reduction actions have been taken. RE is the risk exposure 

after taking the risk reduction action. An RRL above 1.00 

indicates that the reduction in risk exposure achieved by a 

measure is greater than its cost. To take a rather unrealistic 

example, it might cost £200,000 to replace a hardware 

configuration used to develop a software application. There is 

a 1% chance of a fire (because of the location of the 

installation, say). The risk exposure would be 1% of £200,000 

that is £2,000. Installing fire alarms at a cost of £500 would 

reduce the chance of fire to 0.5% the new risk exposure would 

be £1,000, a reduction of £1,000 on the previous exposure. 

The RRL would be (2000-1000)/500, that is 2.0, and the action 

would therefore be deemed worthwhile. 

• creating and maintaining the risk register 

When the project planners have picked out and examined what 

appear to be the most threatening risks to the project, they need to 

record their findings in a risk register. The typical content of such a 

register . After work starts on the project more risks will emerge and 

be added to the register. At regular intervals, probably as part of the 

project control life cycle described in Chapter 9, the risk register 

should be reviewed and amended. Many risks threaten just one or 

two activities, and when the project staffs have completed this risk 

can then be 'closed' as no longer relevant. In any case, as noted 

earlier, the probability and impact of a risk are likely to change 

during the course of the project. 

8.10 EVALUATING RISKS TO THE SCHEDULE 

This illustrated the point that a forecast of the time needed to do a job is 

most realistically presented as a graph of likelihood of a range of figure, 

with the most  

Likely duration as the peak and the chances of the job taking longer or 

shorter shown as curves sloping down on either side of the peak. Thus we 

can show that a job might take five days but there is a small chance  it 

might need four or six days, and a smaller chance of three or seven days, 

and so on. If a task in a project takes longer than planned we might hope 

that some other task might take less and thus compensate for this delay. In 

the following sections we will examine PERT, a technique which takes 

account of the uncertainties   in the duration of activities  



 

 
185 

 

Risk Management 

 

                                Risk Register Page  

within a project.  We will also touch upon Monte Carlo simulation, which 

is a more powerful and flexible tool that tackles the same problem 

A drawback to the application of methods like PERT is that in practice 

there is a tendency for developer to work to the schedule even if a task 

could be completed more quickly. Even if tasks are completed earlier than 

planned. project managers are not always quick to exploit the 

opportunities to start subsequent activities earlier than schedule. Critical 

chain management will be explored as a way of tackling this problem. 

8.11 BOEHM'S TOP 10 RISKS AND COUNTER 

MEASURES 

Boehm has identified the top 10 risks that a typical project suffers from 

and has recommended a set of countermeasures for each. We briefly 

review these in the following. 

1. Personnel shortfall: This risk concerns shortfall of project 

personnel. The shortfall may show up as either project personnel 

may lack some specific competence required for the project tasks or 

personnel leaving the project (called manpower turnover) before 



   

 
186 

Software Project  

Management 
 

 

186 

project completion. The countermeasures suggested including 

staffing with top talent, job matching, team building, and cross-

training f personnel. 

2. Unrealistic schedules and budgets: The suggested counter 

measures include the project manage working out the detailed 

milestones and making cost and schedule estimations based on it 

Other counter measures are incremental development, software 

reuse, and requirements scrubbing It may be mentioned that 

requirements scrubbing involves removing the overly complex and 

unimportant requirements, in consultation with the customers. 

3. Developing the wrong functions: The suggested countermeasures 

include user surveys and user participation, developing prototypes 

and eliciting user feedback, and early production users manas and 

getting user feedback on it 

4. Developing the wrong user interface: The countermeasures 

suggested for this risk include pross typing, scenarios and task 

analysis, and user participation. 

5. Gold-plating: Gold-plating as discussed in Chapter 1, concerns 

development of features that the team members consider nice to 

have and, therefore, decide to develop those even though the 

customer has not expressed any necessity for those. The 

countermeasures suggested for this risk includes require ments 

scrubbing, prototyping and cost-benefit analysis. 

6. Continuing stream of requirements changes: The 

countermeasures suggested for this risk include incremental 

development, high change threshold and information hiding. 

7. Shortfalls in externally furnished components: This concerns the 

risk that the components developed by third party are not up to the 

mark. The countermeasures suggested for this risk include bench 

marking, inspections, reference checking and compatibility analysis. 

8. Shortfalls in externally performed tasks: This concerns the risk 

that the work performed by the contractors may not be up to the 

mark. The countermeasures suggested for this risk include reference 

checking, pre-award audits, award-fee contracts, competitive design 

or prototyping and team building 

9. Real-time performance shortfalls: The countermeasures suggested 

for this risk include simulation. Benchmarking, modeling, 

prototyping, instrumentation, and tuning.  

10. Straining computer science capabilities: The countermeasures 

suggested for this risk include technical analysis, cost-benefit 

analysis, and prototyping. 

 



 

 
187 

 

Risk Management Risk Mitigation, Monitoring, and Management (RMMM) Plan 

It is usually advisable for the project manager to develop a risk mitigation, 

monitoring, and management (RMMM) plan for a project. An important 

component of this document is a risk table. Each row of the table contains 

the name of the risk, its probability, and its impact on the project. For each 

risk in the risk table, the specific conditions or events that need to be 

monitored to check whether the risk has occurred is mentioned. The 

possible ways in which the risk can be avoided (mitigation) is also 

documented. A contingency plan to contain the effect of the risk is also 

documented. 

8.12 APPLYING THE PERT TECHNIQUE 

Using PERT to evaluate the effects of uncertainty 

PERT was developed to take account of the uncertainty surrounding 

estimates of task durations. It was developed in an environment of 

expensive, high-risk, and state-of-the-art projects - not that dissimilar to 

many of today's large software projects. 

The method is very similar to the CPM technique (indeed many 

practitioners use the terms PERT and CPM interchangeably) but, instead 

of using a single estimate for the duration of each task, PERT requires 

three estimates. 

• Most likely time: the time we would expect the task to take under 

normal circumstances. We shall identify this by the letter m. 

• Optimistic time: the shortest time in which we could expect to 

complete the activity, barring outright miracles. We shall use the 

letter for this. 

• Pessimistic time: the worst possible time, allowing for all 

reasonable eventualities but excluding 'acts of God and warfare' (as 

they say in most insurance exclusion clauses). We shall call this b. 

PERT then combines these three estimates to form a single expected 

duration, using the formula 

                                                  te = a+4m+b/6 

Using expected durations 

The expected durations are used to carry out a forward pass through a 

network, using the same method as the CPM technique. In this case, 

however, the calculated event dates are not the earliest possible dates but 

the dates by which we expect to achieve those events. 

The PERT network illustrated in Figure 7.6 indicates that we expect the 

project to take 13.5 weeks. It Figure 7.6 we have used an activity-on-

arrow network as this form of presentation makes it easier to separate  

visually the estimated activity data (expected durations and, later, their 



   

 
188 

Software Project  

Management 
 

 

188 

standard deviations) from the calculated data (expected completion dates 

and target completion dates). The method can, of course, be equally well 

supported by activity-on-node diagrams. 

 

The Pert Network Aftter The fordward pass  

Activity standard deviation  

A quantitative  measure of the degree of uncertainty of an activity duration 

estimate may be obtained by calculating the standard deviation s of an 

activity time, using the formula  

S=b-a/6 

The activity  standard deviation is proportional to the difference between 

the optimistic and pessimistic estimates ,and can be used as a ranking 

measure of the degree of uncertainty of risk for each activity. The activity 

excepted durations and standard deviation for our saample project . 

The likelihood of meeting targets  

The main advantage of the PERT technique is that is provide a method for 

estimating the probability of meeting or missing target  dates. There might 

be only single  target date – the projecct completion –but we might wish to 

set a additional  intermediate target. 

                                                       
Excepted time and standard  deviation 



 

 
189 

 

Risk Management Calculating the  Z values  

The Z value calculated for each node that has a targeted date.It is 

eiquivalent to the number of standard deviation between the node excepted 

and target date.It is calculating using this formula. 

z=T-te/s 

converting z values  

 Advantages of PERT 

We have seen that by requesting multi-valued activity duration estimates 

and calculating expected dates PERT focuses attention on the uncertainty 

of forecasting. We can use the technique to calculate the standard 

deviation for each task and use this to rank them according to their degree 

of risk. Using this ranking, we can see, for example, that activity F is the 

one regarding which we have greatest uncertainty, whereas activity C 

should, in principle, give us relatively little cause for concern. 

If we use the expected times and standard deviations for forward passes 

through the network we can, for any event or activity completion, estimate 

the probability of meeting any set target. By setting target dates along the 

critical path, we can focus on those activities posing the greatest risk to the 

project's schedule. 

8.13 MONTE CARLO SIMULATION 

• As an alternative to the PERT technique, we can use Monte Carlo 

simulation approach. Monte Carlo simulation   is a class of general 

analysis techniques that are valuable to solve any problem that is 

complex nonlinear or involves more than just a couple of uncertain 

parameters. Monte Carlo simulations involve repeated random 

sampling to compute the results. Since this technique is based on 

repeated computation of random numbers, it becomes easier to use 

this technique when available as a computer program 

• When Monte Carlo simulation is used to analyses the risk of not 

meeting the project deadline, the project completion time is first 

modeled as a mathematical expression involving the probability 

distributions of the completion times of various project activities and 

their precedence relationships. Activity durations can be specified in 

a variety of forms, depending upon the information available. If, for 

example, we have historic data available about the durations of 

similar activities as shown in the probability chart in Figure 7.4 we 

might be able to specify durations as pertinent probability 

distributions. With less information available, be should, at least, be 

able to provide three time estimates as used by PERT 

• Monte Carlo simulation essentially evaluates a range of input values 

generated from the specified probability distributions of the activity 

durations. It then calculates the results repeatedly; each time using a 



   

 
190 

Software Project  

Management 
 

 

190 

different of random values generated from the given probability 

functions. Depending upon the number of probalistic 

• Parameters and the ranges specified for them, a Monte Carlo 

simulation could involve thousands or even millions of calculations 

to complete. After the simulation results are available, these are 

analyzed summa razed 3vy and represented graphically, possibly 

using a histogram as shown in Figure 7.9. The main steps in hind in 

carrying out Monte Carlo simulation for a project consisting of n 

activities are as follow  

• Step 1: Express the project completion time in terms of the 

duration of the n activities (x) and their dependences as a 

precedence graph, d=f(x₁, x₂,...,xn). 

• Step 2: Generate a set of random inputs, X₁, X/2 Xin using 

specified probability distributions. 

• Step 3: Evaluate the project completion time expression and 

store the result in d 

• Step 4: Repeat Steps 2 and 3 for the specified number of 

times. 

• Step 5: Analyze the results din summarize and display using a 

histogram as the one shown in Figure given below 

 

To appreciate the advantage of Monte Carlo simulations over a manual 

approach, consider the following. In the manual approach, a few 

combinations of each project duration are chosen (such as best case, worst 

case, and most likely case), and the results recorded for each selected 

scenario. In contrast, in Monte Carlo simulation, hundreds or thousands of 

possible random sampling of probability distribution functions of the 

activity durations are considered as samples for evaluation of the project 

completion time expression to produce outcomes. Monte Carlo simulation 



 

 
191 

 

Risk Management is expected to give a more realistic result than manual analysis of a few 

cases, especially because manual analysis implicitly gives equal weights to 

all scenarios. 

8.14 CRITICAL CHAIN CONCEPTS 

• This chapter has stressed the idea that the forecast for the duration of 

an activity cannot in reality be a single number but must be a range 

of durations that can be displayed on a graph such as Figure 7.3. 

However, we would want to pick one value in that range which 

would be the target. 

• The duration chosen as the target might be the one that seems to be 

the most likely. Imagine someone who cycles to work each day. It 

may be that on average it takes those about 45 minutes to complete 

the journey, but on some days, it could be more and on others it 

could be less. These journey times could be plotted on a graph like 

the one in Figure 7.3. If the cyclist had a very important meeting at 

work, it is likely that they would give themselves more time - say an 

extra 15 minutes than the average 45 minutes to make sure that they 

arrived in time. In the discussion above on the PERT risk technique 

the most likely duration was the middle value, and the pessimistic 

estimate was the equivalent of the 45+15=60 minute 

• Of course, there will be some days when the cyclist will beat the 

average of 45 minutes. When a project is being executed, the project 

manager will be forced to focus on the activities where the actual 

durations exceed the target. Activities which are completed before 

the target date are likely to be overlooked. These early completions, 

properly handled, could put some time in hand that might still allow 

the project to meet its target completion date if the later activities are 

delayed. 

 

Percentage of activities early or late (after van Genuchten 1991) 

Deriving ‘most likely activity duration 

• The target date generated by critical chain planning is one where it is 

estimated that there is a 50% chance of success - this approximates 

to the expected time identified in the PERT risk method. In some 



   

 
192 

Software Project  

Management 
 

 

192 

explanations of critical chain project planning, it is suggested that 

the most likely activity duration can be identified by halving the 

estimates provided. This assumes that the estimates given to the 

planner will be 'safe' ones based on a 95% probability of them being 

achieved. If you look at Figure 7.3, the 95% estimate would be 9 

days and half of that (4.5 days) would not be a reasonable target as it 

would have a probability of only 10% of success. It also assumes 

that a probability profile has a bell-shaped normal distribution (like 

the example in Figure 7.3). If you look at the distribution which 

resulted from van Genuchten's research, see that it is certainly not 

bell-shaped. Other critical chain experts suggest deducting 33% 

from the safe estimate to get the target estimate - which seems less 

unreasonable. 

• However, what appear to be arbitrary managerial reductions in the 

estimates may not be a good way to motivate developers, especially 

if these staff supplied the estimates in the first place. A better 

approach would be to ask developers to supply two estimates. One 

of these would be a 'most likely' estimate and the other would 

include a safety margin or comfort zone. From now on we are going 

to assume that this is what has happened. In fact we will use the 

figures already presented in Table 7.6 in this new role (Table 7.8). 

Using latest start dates for activities 

Working backwards from the target completion date, each activity is 

scheduled to start as late as possible. Among other things, this should 

reduce the chance of staff being pulled of the project on to other work. It is 

also argued - with some justification according to van Genuchten's 

research above - that most developers would tend to start work on the task 

at the latest start time anyway. However, it does make every activity 

"critical'. If one is late the whole project is late. That is why the next steps 

are needed. 

Inserting project and feeder buffer 

• To cope with activity overruns, a project buffer is inserted at the end 

of the project before the target completion date. One way of 

calculating this buffer is as the equivalent of 50% of the sum of 

lengths of the comfort zones' that have been removed from the 

critical chain. The critical chain is the longest chain of activities in 

the project, taking account of both task and resource dependencies. 

This is different from the critical path a latter only takes account of 

task dependencies. A resource dependency is where one activity has 

to wait for a resource (usually a person in software development) 

which is being used by another activity to become available. If an 

activity on this critical chain is late, it will push the project 

completion date further into the project buffer. That the buffer 

should be 50% of the total comfort zones for critical chain activities 

is based on the grounds that if the estimate for an activity was 

calculated as having a 50% chance of being correct, the buffer 



 

 
193 

 

Risk Management would only need to be called upon by the 50% of cases where the 

estimate was not correct. 

• An alternative proposal is to sum the squares of the comfort zones 

and then take the square root of the total This is based on the idea 

that each comfort zone is the equivalent to the standard deviation of 

the activity back and look at the section headed Calculating the 

standard deviation of each project event in Section 7.12 This method 

of calculation still produces a figure which is less than simply 

summing all the comfort zones This is justified on the grounds that 

the contingency time needed for a group of activities is less than the 

sum of the individual contingency allowances as the success of some 

activities will compensate for the shortfalls in others. 

• Buffers are also inserted into the project schedule where a subsidiary 

chain of activities feeds into the critical chain. These feeding buffers 

could once again be set at 50% of the length of the comfort zone' 

removed from the subsidiary or feeding chain. 

Project execution 

When the project is executed, the following principles are followed 

No chain of tasks should be started earlier than scheduled, but once it has 

been started it should be finished as soon as possible - this invokes the 

relay race principle, where developers should be ready to start their tasks 

as soon as the previous, dependent, tasks are completed. 

• Buffers are divided into three zones: green, amber, and red, each of 

an even (33%) size: 

• Green, where no action is required if the project completion date 

creeps into this zone. 

• Amber, where an action plan is formulated if the project completion 

dates move into this zone. 

• Red, where the action plan above is executed if the project 

penetrates this zone. 

• Critical chain planning concepts have the support of a dedicated 

group of enthusiasts. However, the full application of the model has 

attracted controversy on various grounds. Our personal view is that 

the ideas of 

• requiring two estimates: the most likely duration/effort and the 

safety estimate which includes additional time to deal with problems 

that could arise with the task, and 

• placing the contingency time, based on the comfort zone' which is 

the difference between the most likely and safety estimates, in 

common buffers rather than associating it with individual actives are 

sound ones that could usefully be absorbed into software project 

management practice 



   

 
194 

Software Project  

Management 
 

 

194 

8.15 SUMMARY 

• In this chapter we have seen how to identify and manage the risks 

that might affect the success of a project. Risk Management is 

concerned with assessing and prioritizing risks and drawing up 

plans for addressing those risks before they become problems.  

• This chapter has also described the techniques for estimating the 

effect of risk on the project's activity network and schedule.  

• Many of the risks affecting software project can be reduced by 

allocating more experienced staff to those activities that are 

affected. 

8.16 EXERCISES 

• Suppose you are the project manager of a large software 

development project. List three common types of risk that your 

project might suffer. Point out the main steps that you would follow 

to effectively manage risks in your project. 

• Schedule slippage is a very common form of risk that almost every 

project manager has to deal with. Suppose you are the project 

manager of a medium seized project. Explain how you would 

manage the risk of schedule slippage. 

• Select the appropriate option 

1) Which one of the following is an important objective of risk 

exposure analysis? 

a) Collecting information that can be used for future risk 

analysis. 

b) Defining risk avoidance strategies for various risks. 

c) Estimating the impact of the risk on the project. 

d) Assessing risk response strategies for the identified risks. 

2) Suppose four risks named R1, R2, R3 and R4 have been identified 

and assigned the probabilities of occurrence of 0.1, 0.2, 0.3 and 0.4 

respectively. The likely damages due to the four risks are Rs. 

50,000, Rs. 100,000, Rs. 70,000 and Rs. 60,000 respectively. Which 

has the highest risk exposure? 

a) R1   b) R2   c) R3   d) R4  

3) Which one of the following is not a displacement strategy for 

mitigating for controlling? 

a) Mitigation  b) simulation  c) avoidance  d) acceptance  

 



 

 
195 

 

Risk Management 4) Which one of the following is the most appropriate sequence of 

strategies that can be adopted for dealing with positive risks?  

a)  Avoid mitigate transfer and accept  

b)  Transfer mitigate avoid and exploit  

c)  Exploit share enhance and accept 

d)  Mitigate Enhance exploit and accept  

5) Purchasing insurance cover can be considered to be an example of 

which one of the following risk handling strategies?  

a)  Mitigation  

b)  Transfer  

c)  Acceptance  

d)  Avoidance 

6) Which one of the following can be considered to be the most 

accurate definition of proactive risk management?  

a)  Monitoring risks throughout the project and taking appropriate 

actions to contain them  

b)  Identifying, analyzing and prioritizing risks and developing a 

risk response plan  

c)  Developing a risk management plan to prevent occurrence of 

various types of risks  

d)  Mitigating transferring or accepting risk as and when a risk 

becomes reality  

7) Which of the following techniques is not suggested by Boehm to 

handle the risks of gold plating?  

a)  Requirements scrubbing  

b)  Cross training of personnel  

c)  Cost benefit analysis  

d)  Prototyping Dsadsa 

8) Assume that you are the project manager software development 

project. Sunrise Engineering Works the hardware vendor has 

intimated you that a problem in customs clearance is preventing 

your network equipment from being delivered on time and may get 

delayed by several months. For handling this risk, you have arranged 

for leasing a network equipment from a local company as an interim 

arrangement. Which one of the following the risk response strategies 

have you adopted?  

a) Transference  b) Acceptance  c) Mitigation  d) Avoidance 

 



   

 
196 

Software Project  

Management 
 

 

196 

8.17 REFERENCES 

a) Software Project Management by Bob Hughes, Mike Cotterell, Rajib 

Mall, Tata McGraw Hill, 6th Edition, 2018. 

b) Project Management and Tools & Technologies – An overview by 

Shailesh Mehta, Shroff Publishers, 1st Edition, 2017. 

c) Software Project Management by Walker Royce, Pearson Publication, 

2005 

 



   
197 

9 
RESOURCE ALLOCATION 

Unit Structure 

9.0 Objectives 

9.1 Introduction  

9.2 Nature of Resources 

9.3 Identify Resources Requirements 

9.4 Scheduling Resources 

9.5 Creating Critical Paths 

9.6 Counting the Cost  

9.7 Being Specific  

9.8 Publishing the Resources Schedule  

9.9 Cost Schedules  

9.10 Summary 

9.11 Exercises 

9.0 OBJECTIVES 

After going through this unit, you will be able to: 

• Identify the resources required for a project 

• Make the demand for resources more even throughout the life of a 

project 

• Produce a work plan and resource schedule  

9.1 INTRODUCTION  

In general, the allocation of resources to activities will lead us to review 

and modify the ideal activity plan.it may cause us to revise stage or project 

completion dates. In any event, it is likely to a narrowing of the times 

spans within which activities may be scheduled. 

The result of resource allocation will normally be several schedules, 

including: 

• an activity schedule indicating the planned start and completion 

dates for each activity. 

• a resource schedule showing the dates on which each resource will 

be required and the level of that requirement. 

• a cost schedule showing the planning cumulative expenditure using 

resources over time. 



   

 
198 

Software Project  
Management 

198 

9.2 NATURE OF RESOURCES  

A resource is any item or person required for the execution of the project. 

This covers many things – from paper clip to key personnel – and it is 

unlikely that we would wish to itemize every resource required, let alone 

draw up a schedule for their use. Stationery and other standard office 

supplies, for example, need not normally be the concern of the project 

manager – ensuring an adequate is the role of the office manager. The 

project manager must concentrate on those resources which, without 

planning, might not be available when required. 

Some resources, such as a project manager, will be required for the 

duration of the duration of the project whereas others, such as a specific 

software developer, might be required for a single activity. The former, 

while vital to the success of the project, does not require the same level of 

scheduling as the latter. The manager may have to request the use of a 

developer who belongs to a pool of resources controlled at programmer 

level. 

In general, resources will fall into one of seven categories.  

• Labour : The main items in this category will be members of the 

development project team such as the project manager, systems 

analysts and software developers. Equally important will be the 

quality assurance team and other support staff and any employees of 

the client organization who might be required to undertake or 

participate in specific activities.t team such as the project manager, 

system analysts and software developers. 

• Equipment: obvious items will include workstations and other 

computing and office equipment. We must not forget that staff also 

need basic equipment such as desks and chairs. 

• Materials: Materials are items that are consumed, rather than 

equipment that is used. They are of little consequence in most 

software projects but can be important for some software that is to 

be widely distributed might, for example, require supplies of disks to 

be specially obtained. 

• Space: For projects that are undertaken with existing staff, space is 

normally readily available. If any additional staff (recruited or 

contracted) should be needed, then office space will need to be 

found. 

• Services: some projects will require procurement of specialist 

services - development of a wide area distributed system, for 

example, requires scheduling of telecommunication services.  

• Time: time is the resource that is being offset against the other 

primary resources - project timescales can sometimes be reduced by 

increasing other resources and will almost certainly be extended if 

they are unexpectedly reduced. 

• Money: money is a secondary resource – it is used to buy other 

resources and will be consumed as other resources are used.  



 

 
199 

 

Resource Allocation 9.3 IDENTIFYING RESOURCE REQUIREMENTS 

the first step in producing a resources allocation plan is to list the 

resources that will be required along with the expected level of demand. 

This will normally be done by considering each activity in turn and 

identifying the resources required. It is likely, however, that there will also 

be resources required that are not activity specific but are part of the 

projects infrastructure or required to support other resources. It is like 

other resources in that it is available at a cost - in this case interest charges. 

9.4 SCHEDULING RESOURCES 

Having produced the resource requirements list. The next stage is to map 

this on to the activity plan to assess the distribution of resources required 

over the duration of the project. This is best done by representing the 

activity plan as a bar chart and using this to produce a resource histogram 

for each resource. 

Each activity has been scheduled to start at its earliest start date a sensible 

initial strategy, since we would, other things being equal, wish to save any 

float to allow for contingencies. Earliest start scheduling, as is the case 

with Amanda’s project, frequently creates resources histograms that start 

with a peak and then tail off.  

Changing the level of resources on a project over time, particularly 

personnel, generally adds to the cost of a project. Recruiting staff has costs 

and, even where staff are transferred internally, time will be needed for 

familiarization with the new project environment. 

The resource histogram poses problems in that it calls for two 

analyst/designers to be idle for twelve days, one for seven days and one 

for two days between the specification and design stage. It is unlikely that 

IOE would have another project requiring their skills for exactly those 

periods of time. This raises the question whether this idle time should be 

charged to Amanda’s project. This ideal resource histogram will be 

smooth with, perhaps, an initial build- up and a staged run – down. 

Some project planning software tools will carry out resources smoothing 

automatically, although they are unlikely to consider all the factors that 

could be used by a project manager. Many project planning software tools 

will produce resources histograms based on earliest activity start dates. 

In practice, resources must be allocated to a project on an activity-by-

activity basis and finding the "best" allocation can be time consuming and 

difficult. As soon as a member of the project team is allocated to an 

activity, that activity acquires a scheduled start and finish date, and the 

team member becomes unavailable for other activities for that period. 

Thus, allocating a resource to one activity limits the flexibility for resource 

allocation and scheduling of other activities. 



   

 
200 

Software Project  
Management 

200 

It is therefore helpful to prioritize activities so that resources can be 

allocated to competing activities in some rational order. The priority must 

almost always be to allocate resources to critical path activities and then to 

those activities that are most likely to affect others. In that way, lower-

priority activities are made to fit around the more critical, already 

scheduled activities. 

Of the various ways of prioritizing activities, two are described below. 

• Total float priority Activities are ordered according to their total 

float, those with the smallest total float having the highest priority. 

In the simplest application of this method, activities are allocated in 

ascending order of total float. However, as scheduling proceeds, 

activities will be delayed are not available at their earliest start dates) 

and total floats will be reduced. It is therefore the floats (and hence 

reorder the list) each time an activity is delayed. 

• Ordered list priority with this method, activities that can proceed at 

the same time are ordered according to a set of simple criteria. An 

example of this is Burman's priority list, which considers activity 

duration as well as total float: 

1. Shortest critical activity 

2. Critical activities 

3. Shortest non-critical activity 

4. Non-critical activity with least float 

5. Non-critical activities 

Unfortunately, resource smoothing, or even containment of resource 

demand to available levels, is not always possible within planned 

timescales - deferring activities to smooth out resource peaks often puts 

back project completion. Where that is the case, we need to consider ways 

of increasing the available resource levels or altering working methods 

9.5 CREATING CRITICAL PATHS 

Scheduling resources can create new critical paths. Delaying the start of an 

activity because of lack of resources will cause that activity to become 

critical if this uses up its float. Furthermore, a delay in completing one 

activity can delay the availability of a resource required for a later activity. 

If the later one is already critical, then the earlier one might now have 

been made critical by linking their resources 

Amanda's revised schedule, which still calls for four analyst/designers but 

only for a single day, is illustrated in the solution to Exercise 8.2 (check it 

in the back of the book if you have not done so already). Notice that in 

rescheduling some of the activities she has introduced additional critical 

activities. Delaying the specification of module C has used up all its float - 

and that of the subsequent activities along that path! Amanda now has two 

critical paths - the one shown on the precedence network and the new one. 



 

 
201 

 

Resource Allocation In a large project, resource-linked criticalities can be quite complex - a 

hint of the potential problems may be appreciated by looking at the next 

exercise. 

9.6 COUNTING THE COST 

The discussion so far has concentrated on trying to complete the project by 

the earliest completion date with the minimum number of staff. We have 

seen that doing these places constraints on when activities can be carried 

out and increases the risk of not meeting target dates. 

Alternatively, Amanda could have considered using additional staff or 

lengthening the overall duration of the project. The additional costs of 

employing extra staff would need to be compared to the costs of delayed 

delivery and the increased risk of not meeting the scheduled date. The 

relationship between these factors is discussed later in this chapter. 

9.7 BEING SPECIFIC 

Allocating resources and smoothing resource histograms is relatively 

straightforward where all resources of a given type can be considered 

equivalent. When allocating Laboure’s to activities in a large building 

project we need not distinguish among individuals - there are likely to be 

many Laboure’s and they may be treated as equals so far as skills and 

productivity are concerned. 

This is seldom the case with software projects. We saw in Chapter 5 that, 

because of the nature of software development, skill and experience play a 

significant part in determining the time taken and, potentially. the quality 

of the final product. Except for extremely large projects, it makes sense to 

allocate individual members of staff to activities as early as possible, as 

this can lead us to revise our estimate of their duration. 

In allocating individuals to tasks, several factors need to be considered. 

• Availability: We need to know whether a particular individual will 

be available when required. Reference to the departmental work plan 

determines this but the wise project manager will always investigate 

the risks that might be involved - earlier projects might, for example, 

overrun and affect the availability of an individual. 

• Criticality Allocation of more experienced personnel to activities on 

the critical path often helps in shortening project durations or at least 

reduces the risk of overrun. 

• Risk We saw how to undertake activity risk assessment in the 

previous chapter. Identifying those activities posing the greatest risk, 

and knowing the factors influencing them, helps to allocate staff. 

Allocating the most experienced staff to the highest-risk activities is 

likely to have the greatest effect in reducing overall project 

uncertainties More experienced staff are, however, usually more 

expensive. 



   

 
202 

Software Project  
Management 

202 

• Training It will benefit the organization if positive steps are taken to 

allocate junior staff to appropriate non-critical activities where there 

will be sufficient slack for them to train and develop skills. There 

can even be direct benefits to the project since some costs may be 

allocated to the training budget. 

• Team building: The selection of individuals must also take account 

of the final shape of the project team and the way they will work 

together. This and additional aspects of team management are 

discussed in Chapter 12. 

9.8 PUBLISHING THE RESOURCE SCHEDULE 

In allocating and scheduling resources, we have used the activity plan (a 

precedence network in the case of the examples in this chapter), activity 

bar charts and resource histograms. Although good as planning tools. they 

are not the best way of publishing and communicating project schedules. 

For this we need some form of work plan. Work plans are commonly 

published as either lists or charts such as that illustrated in Figure 8.7. In 

this case, Amanda has chosen not to include activity floats (which could 

be indicated by shaded bars) as she fears that one or two members of the 

team might work with less urgency if they are aware that their activities 

are not critical. 

Notice that, somewhat unusually, it is assumed that there are no public 

holidays or other non-productive periods during the 100 days of the 

project and that none of the team has holidays for the periods they are 

shown as working. 

9.9 COST SCHEDULES 

It is now time to produce a detailed cost schedule showing weekly or 

monthly costs over the life of the project. This will provide a more 

detailed and accurate estimate of costs and will serve as a plan against 

which project progress can be monitored. 

Calculating cost is straightforward where the organization has standard 

cost figures for staff and other resources. Where this is not the case, then 

the project manager will have to calculate the costs. 

In general, costs are categorized as follows: 

• Staff costs: These will include staff salaries as well as the other 

direct costs of employment such as the employer's contribution to 

social security funds, pension scheme contributions, holiday pay and 

sickness benefit. These are commonly charged to projects at hourly 

rates based on weekly work records completed by staff. Note that 

contract staff are usually charged by the week or month - even when 

they are idle. 



 

 
203 

 

Resource Allocation • Overheads: Overheads represent expenditure that an organization 

incurs, which cannot be directly related to individual projects or 

jobs, including space rental, interest charges and the costs of service 

departments (such as human resources). Overhead costs can be 

recovered by making a fixed charge on development departments (in 

which case they usually appear as a weekly or monthly charge for a 

project), or by an additional percentage charge on direct staff 

employment costs. These additional charges or on-costs can easily 

equal or exceed the direct employment costs. 

• Usage charges: In some organizations, projects are charged directly 

for use of resources such as computer time (rather than their cost 

being recovered as an overhead). This will normally be on an 'as 

used' basis. 

9.10 SUMMARY 

In this chapter we have discussed the problems of allocating resources to 

project activities and the conversion of an activity plan to a work schedule. 

We have seen the importance of the following: 

• Identifying all the resources needed. 

• Arranging activity starts to minimize variations in resource levels 

over the duration of the project. 

• Allocating resources to competing activities in a rational order of 

priority. 

• Taking care in allocating the right staff to critical activities. 

9.11 EXERCISES 

1. Burman's priority ordering for allocating resources to activities 

considers the activity duration as well as its total float. Why do you 

think this is advantageous? 

2. If you have access to project planning software, use it to produce an 

activity plan for Amanda's project and include the staff resource 

requirements for each activity. 

Explore the facilities of your software and answer the following 

questions. 

• Can you set up resource types and ask the application to 

allocate individuals to tasks? 

• Will your software allow you to specify productivity factors 

for individual members of staff so that the duration of an 

activity depends upon who is carrying it out? 

• Will your software carry out resource smoothing or provide a 

minimum cost solution? 



   

 
204 

Software Project  
Management 

204 

• Can you replicate Amanda's work schedule (see Figure 8.7) - 

or produce a better one? 

3. On a large project, it is often the responsibility of a team leader to 

allocate tasks to individuals. Why might it be unsatisfactory to leave 

such allocations entirely to the discretion of the team leader? 

4. In scheduling her project, Amanda ignored the risks of absence due 

to staff sickness. What might she have done to estimate the 

likelihood of this occurring and how might she have taken account 

of the risk when scheduling the project? 

5. (a) Draw up an activity network and calculate the earliest finish 

for the following project: 

 

    (b) Produce a table showing the number of specialists of each type 

needed on each day of the project if every activity was started 

as soon as possible. How many of each type of resource will 

need to be recruited for the project as a whole if the earliest 

finish date is to be preserved? 

    (c) What impact would there be on the project if there were only 

two systems designers? 

    (d) What impact would there be on the project if there was only 

one systems designer, but you had three software coders? 

    (e) Assuming that the systems designers were employed for the 

duration of the project, what would be the percentage 

utilization of the systems designers in the case of both (c) and 

(d) above? 

6. (a) Draw up an activity network for the activities below, 

identifying the critical path. 



 

 
205 

 

Resource Allocation 

 

    (b) Draw up a resource table showing the number of each type of 

resource needed on                   each day of the project and 

assuming that there is only one systems designer. 

    (c) Identify the best way of revising the plan to remove resource 

clashes. 

7. Consider a software development project with seven tasks T1-17. 

The estimated duration of these seven tasks in weeks are 3, 2, 3, 5, 2, 

4, and 5 respectively. T2 and T4 can start when T1 is complete. T3 

can start when T2 is complete. T5, T6, and T7 can start when both 

T3 and T4 are complete. If developer: A is available from the start 

of the project and developer B and C become available after three 

weeks of the start of the project. Schedule the project and show your 

results in the form of a bar chart and resource histogram. 

8. For each of the following questions, exactly one option is correct. 

Select the appropriate option. 

(ii) Which one of the following is not true about resource histograms? 

(a) A resource histogram is a representation of the distribution of 

the resources required over the duration of the project. 

(b) Based on the resource histogram, some activities may be 

delayed reducing the    maximum demand of a resource. 

(c) A resource histogram is used to estimate activity durations. 

(d) The initial activity network is refined based on the resource 

histogram. 

(iii) Which one of the following is false regarding resource scheduling? 

(a) Resource scheduling may lead to changing the duration of 

some activities on the PERT chart. 

(b) Resource scheduling may not affect the critical path. 

(c) Resource scheduling usually shortens the critical path. 

(d) Resource scheduling can create additional critical paths. 

 



   

 
206 

Software Project  

Management 
 

 

206 

10 
MONITORING AND CONTROL 

Unit Structure 

10.0 Objectives 

10.1 Introduction 

10.2 Creating the Framework 

 10.2.1 Responsibility 

 10.2.2 Assessing Progress 

 10.2.3 Setting Checkpoints 

 10.2.4 Taking Snapshots 

10.3 Collecting the Data 

 10.3.1 Partial Completion Reporting 

 10.3.2 RAG Reporting 

10.4 Review 

 10.4.1 Utility of Review 

 10.4.2 Candidate Work Product for Review 

 10.4.3 Review Roles 

 10.4.4 Review Process 

 10.4.5 Data Collection 

10.5 Visualizing Progress 

 10.5.1 Gantt Chart 

 10.5.2 Slip Chart 

 10.5.3 Timeline 

10.6 Cost Monitoring 

10.7 Earned Value Analysis 

 10.7.1 Baseline Budget 

 10.7.2 Monitoring Earned Value 

 10.7.3 Schedule Variance 

 10.7.4 Time Variance 

 10.7.5 Cost Variance 

 10.7.6 Performance Ratios 

10.8 Prioritizing Monitoring 

10.9 Getting the Project Back on Target 

 10.9.1 Maintaining the Business Case 

 10.9.2 Exception Planning 

10.10 Change Control 

 10.10.1 Change Control Procedures 

 10.10.2 Changes in Scope of a System 

 10.10.3 Configuration Librarian’s Role 

10.11 Software Configuration Management (SCM) 



 

 
207 

 

Monitoring and Control 10.11.1 Context in which Configuration Management is Necessary 

10.11.2 Few Terminologies 

10.11.3 Purpose of Software Configuration Management 

10.11.4 Configuration Management Process 

10.11.5 Modifications to Work Product Under Configuration 

Control 

 10.11.6 Release Management 

 10.11.7 Open-Source Configuration Management Tools 

10.12  Summary 

10.13  List of References 

10.14  Unit End Exercise 

10.0 OBJECTIVES 

After going through this chapter, you will be able to understand  

• The need to monitor the progress of the project 

• The risk of slippages 

• The ways to visualize and assess the planned and actual state of the 

project 

• Countermeasures to revise target back on track in case of drift 

• How to control changes to requirements of the project.  

10.1  INTRODUCTION 

• Once the work schedules have been published and the project has 

begun, the focus must be on progress.  

• This necessitates monitoring what is happening, comparing actual 

achievement to the schedule, and revising plans and schedules as 

needed to bring the project as close to completion as possible. 

10.2  CREATING THE FRAMEWORK 

• Controlling a project and ensuring that goals are met requires regular 

monitoring.  

• There could be a mismatch between the expected and actual 

outcomes.  

• So, replanning may be required to get the project back on track or 

target date can be revised. 

• Projects face four types of shortfalls namely delay in meeting target 

dates, quality, inadequate functionality and costs going over the 

target. 



   

 
208 

Software Project  

Management 
 

 

208 

• The following flowchart depicts the project control cycle and shows 

the various aspect of project planning to monitoring and revising the 

plan in case of drifts. 

 

Figure 10.1 – Project Control Cycle 

10.2.1 RESPONSIBILITY 

• The overall responsibility for ensuring satisfactory progress on a 

project is often the role of the project steering board.  

• Day to day responsibility is on the project manager and he delegates 

work to team leaders. 

• In small projects, employees report directly to project manager but 

in large projects the team leaders collate reports and send to 

manager. 



 

 
209 

 

Monitoring and Control 

 

Figure 10.2 – Project Reporting Structure 

• Progress reports can be oral or written, formal or informal and 

regular or adhoc. Sample table shows the various reporting 

categories 

Table 10.1 – Categories of Reporting 

Report Type Example 

Oral Formal Regular Progress meetings held weekly or monthly 

Oral Formal Adhoc Review meetings held at end of stage 

Written Formal Regular Preparation of Job sheets and progress report 

Written Formal Adhoc Preparation of change or exception reports 

Oral Informal Adhoc Having social interaction 

10.2.2 ASSESSING PROGRESS 

• Some information used to evaluate mission development may be 

amassed routinely, even as different information may be precipitated 

via way of means of particular events.  

• This information has to be objective and tangible whether or not or 

now no longer a specific report has been delivered. 

10.2.3 SETTING CHECKPOINTS 

• Checkpoints are necessary to demonstrate how well a project is 

performing. 

• They help in identify the important risks, issues, and out of tolerance 

conditions. 



   

 
210 

Software Project  

Management 
 

 

210 

• They perform a global assessment for the whole lifecycle, not just 

the current situation of an individual perspective or intermediate 

product.  

• So, checkpoints may be regular or tied to specific events. 

10.2.4 TAKING SNAPSHOTS 

• The frequency of progress reviews will rely on the dimensions and 

diploma of threat of the challenge.  

• Major or project-degree development critiques will normally take 

region at specific factors all through the existence of a challenge 

generally called assessment points or control points. 

• Weekly collection of information and its assessment is usually 

preferred. 

• End stage assessment is also a common practice adopted by 

PRINCE2. 

10.3 COLLECTING THE DATA 

• Managers try to decompose long activities in more controllable tasks 

than one or two weeks.  

• It will still be necessary to collect information on partially 

completed activities and, in particular, the prevention of the 

remaining amount of work.  

• It can be difficult to make such predictions precisely. 

• But in case of series of products, it is easy to estimate the partial 

completion of activities. 

10.3.1 PARTIAL COMPLETION REPORTING 

• Numerous associations utilize standard bookkeeping frameworks 

with week-by-week timesheets to charge staff time to individual 

positions.  

• The staff time booked to a task demonstrates the work did and the 

charges to the undertaking.  

• It does not, in any case, mention to the undertaking manager what 

has been created or regardless of whether errands are on time. 

• So weekly time sheets are adapted by breaking tasks down to 

activity leval and collecting information about work done in addition 

to time spent. 



 

 
211 

 

Monitoring and Control 

 

Figure 10.3 – Weekly Time Sheet 

10.3.2 RAG (RED/AMBER/GREEN) REPORTING 

• The drawback of the previous scheme is to ask for estimated 

completion dates. 

• This scheme overcomes by asking the likelihood of meeting the 

planned target date. 

• So, in traffic light or RAG method, we recognize the key (first level) 

components for a piece of work.  

• It Breaks these vital components into constituent’s components 

(second level) and survey every one of the second level components 

on scale Green – 'on track', Amber – 'not on track but rather 

recoverable' and Red – 'not on track and recoverable just with 

trouble'  

• It then surveys every one of the second level assessments to show up 

at first level evaluations. 

• Finally review first and second level assessment to produce the final 

evaluation. 



   

 
212 

Software Project  

Management 
 

 

212 

 

Figure 10.4 – RAG Reporting Sheet 

• RAG assessment highlights risk of non-achievement. 

• It does not attempt to estimate work completed or compute 

predictable delays. 

10.4 REVIEW 

• Review of work items is a significant mechanism for checking the 

advancement of a project and guaranteeing the quality of the work 

items.  

• It is important to kill as many deformities in these work items to 

understand a result of acceptable quality.  

• Testing is a convincing effective defect removal technique, but 

testing is relevant to just executable code.  

• Review is pertinent to all work items even the non-executable work 

items. 

• Review is more cost-effective in removing defects. 

10.4.1 UTILITY OF REVIEW 

• Apart from review being the most cost-effective defect removal 

technique, it offers other advantages too. 

• A review usually aids in identifying any deviations from standards, 

as well as issues that may affect the software's maintenance.  

• Reviewers make suggestions for how to improve the work items.  



 

 
213 

 

Monitoring and Control • A review meeting, in recognizing defects, frequently provides 

learning opportunities for not only the creator of a work items, but 

also the other review meeting participants.  

• Participants in the review gain a thorough understanding of the work 

items under consideration, making it simpler for them to 

communicate with or use the work items in their work. 

10.4.2 CANDIDATE WORK PRODUCT FOR REVIEW 

• Apart from final work items and end products, other items are also 

reviewed such as requirements specification documents, user 

interface specification and design documents, architectural, high-

level and detailed design documents, test plan and the designed test 

cases and lastly project management plan and configuration 

management plan 

10.4.3 REVIEW ROLES 

• Every review meeting requires few members (Moderator, Recorder 

and Reviewer) to play key roles in the review process. 

• The moderator plans and organises meetings, distributes review 

materials, and leads and moderates review sessions.  

• The recorder logs the defects discovered as well as the time and 

effort expended. 

• The reviewers (review team members) go over the work product 

and make specific suggestions to the author about the existing flaws 

as well as ways to improve it. 

10.4.4 REVIEW PROCESS 

• There are four important activities in the review process namely 

planning, preparation, review meeting and rework and follow-up. 

• Planning - The input to the planning phase is the work products 

which is ready for review. The project manager appoints moderator 

and with his consultation nominates the review team. The moderator 

is responsible to schedule all review meetings. 

• Preparation - To initiate the review process, a brief preparation 

meeting is scheduled and copies of work products are handed over to 

team. Author presents overview of work. Moderator highlights 

objectives of review and individual team prepare review logs and 

record their observation. 



   

 
214 

Software Project  

Management 
 

 

214 

 

Figure 10.5 – Review Process Model 

• Review Meeting – The reviewer presents their observations and 

author along with other reviewers respond to it and moderator 

ensures discussions are focussed and productive. At the end the 

recorder scribes the defects and prepares defect log with review 

statistics. 

• Rework and follow-up – The author raise all issues by team and 

brings in relevant modification. A rejoinder is prepared against the 

defect log. The corrected work along with rejoinder is distributed to 

team for confirmation. At the end a summary report of review is 

prepared. 

10.4.5 DATA COLLECTION 

• Because a review meeting is an entirely human endeavour, the data 

representing the meeting's results may be lost if not properly 

recorded.  

• Through addition to recording all defects, data on the time spent by 

reviewers on the review activity must be recorded.  

• Review data is captured in three reports: Review Preparation Log, 

Review Log, and Review Summary Report. 

• The Review Preparation Log is prepared by reviewer which 

contains data about defects, location, criticality and time spent in 

doing review. 

• The Review Log is prepared by author and contains those defects 

that are agreed upon. 

• The Review Summary Report summarizes the review data with 

information such as total defects and amount of time spent on each 

review. 



 

 
215 

 

Monitoring and Control  10.5 VISULIZING PROGRESS 

• After gathering data on project progress, a manager must find a way 

to effectively present that data.  

• Some of these methods provide a static image, a single snapshot, 

while others attempt to demonstrate how the project has progressed 

and changed over time. 

10.5.1 GANTT CHART 

• The Gantt chart is the most basic and oldest technique for tracking 

project progress. 

• This is primarily an activity bar chart that shows scheduled activity 

dates and durations, often supplemented with activity floats.  

• The chart records reported progress, and today's cursor provides an 

instant visual indication of which activities are ahead or behind 

schedule. 

 

Figure 10.6 - Sample Gantt Chart 

10.5.2 SLIP CHART 

• It is a very equivalent alternative that some project managers prefer. 

• This is because they believe it provides a more visible visual 

indication of activities that are not progressing according to plan – 

the further the skip line bends, the significantly larger the deviation 

from the plan. 

• Jagged lines indicate need for rescheduling. 



   

 
216 

Software Project  

Management 
 

 

216 

 

Figure 10.7 - Sample Slip Chart 

10.5.3 TIMELINE 

• One drawback of the charts discussed thus far is that they do not 

actually demonstrate the slippage of the project completion date 

throughout the project's life cycle. 

• Analysing and comprehending trends in the project thus far allows 

us to forecast the project's future progress.  

• The timeline chart is a method of recording and displaying how 

targets have changed over the course of a project. 

• It is useful during project execution stage and post implementation 

stage as reasons for changes and delays can be known which can be 

avoided in future. 

 

Figure 10.8 – Sample Timeline Chart 



 

 
217 

 

Monitoring and Control 10.6 COST MONITORING 

• Expenditure control is a vital component of project control not only 

because it provides an indication of the effort that has taken into a 

project, but also because it delivers an indication of the effort that 

has gone into a project.  

• A project may be completed on time but over budget due to the 

addition of additional resources.  

• A project may be delayed because the staff that was initially 

committed has not been deployed and so project will be late but 

under budget in this case.  

• As a result, both accomplishments and costs must be tracked.  

• A cumulative expenditure chart is a straightforward way to compare 

actual and planned expenditures. 

• When we add projected future costs calculated by adding the 

estimated costs of unfinished work to the costs already incurred, the 

costs chart becomes more useful.  

• A computer-based planning tool is used, and cost schedule revisions 

are generally provided automatically after actual expenditure has 

been recorded. 

  

Initial Chart Revised Chart with New Cost 

and Completion Date 

Figure 10.9 – Cumulative Expenditure Chart 

10.7 EARNED VALUE ANALYSIS 

• Earned value analysis has attracted increasing attention in recent 

years and can be thought of as a refinement of cost monitoring.  

• It is rooted on assigning a 'value' to each task or work package based 

on the initial expenditure forecasts.  



   

 
218 

Software Project  

Management 
 

 

218 

• Planned value (PV) or Budgeted cost of work scheduled (BCWS) is 

the initial estimate of the effort/cost to complete a task (compare to 

the concept of a 'price').  

• A task that has not yet begun is assigned an earned value of zero, 

and when completed, it is credited with the task's original planned 

value.  

• Earned value (EV) or Budgeted cost of work performed (BCWP) is 

the sum of the PVs for the work completed at this time. 

• Consistent methods of assigning earned value in software projects 

include 

• 0/100 technique – It means initial value is zero and on completion 

given 100% of budgeted value. 

• 50/50 technique – It means initial value of 50% is started and on 

completion given 100% of budgeted value. 

• 75/25 technique - It means initial value of 75% is started and on 

completion given remaining 25% of budgeted value. 

• Milestone technique – It is based on fulfillment of milestones based 

on initial plan. 

• Percentage Complete technique – It is based on some objectively 

measuring criteria. 

• The 0/100 is preferred choice 

10.7.1 BASELINE BUDGET 

• It is the first stage in setting up earned value analysis. 

• It is based on the project plan and depicts the projected increase in 

earned value over time.  

• Earned value can be expressed in monetary terms, person-hours, or 

work days. 

10.7.2 MONITORING EARNED VALUE 

• The following task is to track earned value as the project progresses 

after having created the baseline budget. 

• This is accomplished by tracking the completion of tasks, the start of 

activities, and the achievement of milestones.  

• Actual cost (AC) or actual cost of work performed (ACWP) can be 

used to collect the actual cost of each task. 

• The performance statistics can be depicted in earned value chart 

which can also be shown directly. 



 

 
219 

 

Monitoring and Control 

 

Figure 10.10 – Earned Value Tracking Chart 

10.7.3 SCHEDULE VARIANCE 

• Schedule variance is expressed in cost terms as EV-PV and indicates 

the extent to which the value of completed work differs from that 

anticipated.  

• A negative SV indicates that the project is running behind schedule. 

10.7.4 TIME VARIANCE 

• It denotes the time difference between when the specified EV should 

have been reached and when it was actually reached. 

10.7.5 COST VARIANCE 

• The difference between the earned value or budgeted cost and the 

actual cost of completed work is calculated as EV-AC.  

• A negative CV indicates that the project is over budget. 

10.7.6 PERFORMANCE RATIOS 

• Two commonly traced ratios are considered as ‘value-for-money’ 

namely Cost Performance Index (CPI) = EV / AC and Schedule 

Performance Index (SPI) = EV / PV. 

• A value greater than one implies that work is being accomplished 

more efficiently than planned, whereas a value less than one implies 

that work is costing more and moving more slowly than anticipated. 

• CPI can be used to generate a revised project cost estimate. 

• BAC/CPI = EAC where EAC stands for estimated on completion; 

BAC stands for budgeted on completion. 

• Given the current rate of progress, SPI can be used to project the 

project's possible duration. 



   

 
220 

Software Project  

Management 
 

 

220 

• SAC/SPI = TEAC where TEAC stands for time estimate at 

completion; SAC stands for schedule at completion. 

 

Figure 10.11 - Earned value chart with revised forecast 

10.8 PRIORITIZING MONITORING 

• In terms of the level of monitoring used, all aspects of the project 

will be treated equally.  

• We must not forget, however, that monitoring takes time and 

resources that could be better used elsewhere.  

• The list that follows prioritizes the deciding level used for 

monitoring. 

• Critical path activities – They can cause delay in project 

completion date and so requires high priority close monitoring. 

• Activities with no free float – They may cause delay in subsequent 

activity which might not affect project completion date but 

availability of resources could be a hitch which could be an area of 

concern. 

• Activities with less than a specified float – They may be taken care 

by regular monitoring. 

• High risk activities – They must be identified at initial stages as 

they may cause overrun or overcost as they may have high variance.  

• Activities using critical resources - They are highly expensive as 

they consume staff resources if not controlled on time. 

 



 

 
221 

 

Monitoring and Control  10.9 GETTING THE PROJECT BACK ON TARGET 

• Almost every project will face delays and unexpected events at some 

point.  

• The project manager's job is to recognise when this happens and to 

try to mitigate the problem's effects as quickly as possible.  

• The project manager makes every effort to keep the project's 

scheduled end date intact.  

• When developing plans to get a project back on track, there are two 

main approaches to consider. 

• Reducing the critical path – This can be handled by adding 

resources especially staff, increase use of current resources, 

reallocate staff to critical activities, reduce scope and finally reduce 

quality. This way we can control the timescales and cost of critical 

activities. Shortening the critical path may cause some other paths to 

become critical which should be taken care off. 

• Changing the requirements for activity precedence - Consider the 

constraints that force some activities to be postponed while others 

are completed. Divide an activity into two parts: one that can begin 

immediately and one that must wait. It is obviously critical to be 

aware that quality may be compromised. It is also critical to evaluate 

the extent to which changes in work practises increase risk. 

10.9.1 MAINTAINING THE BUSINESS CASE 

• The project sponsor's main concern when making decisions about 

project management is whether the project's business case has been 

preserved.  

• If costs rise, the value of the benefits at the end of the project falls.  

• If completion date is delayed and functionalities shortened, in this 

case also the expected benefits would be reduced than what was 

expected. 

• The project could then be cancelled in the following cases. 

10.9.2 EXCEPTION PLANNING 

• The project manager is usually allowed to change the specifics of a 

plan as long as the agreed-upon project outcomes are delivered on 

time and within budget. 

• A few changes to the plan may have a repercussion on the project's 

delivery date, scope, or costs.  

• These, in turn, may have an impact on the business case.  



   

 
222 

Software Project  

Management 
 

 

222 

• The project manager would have to obtain the approval of the 

project's business sponsors. 

• One challenge is to develop an exception report that explains why 

the deviations from the existing plan occurred.  

• After reviewing the report and approving one of the options, the 

Project Board may charge the project manager with developing a 

more detailed exception plan. 

10.10 CHANGE CONTROL 

• When developing a document, such as user requirements, many 

different forms of the document may be created as it goes through 

development and review cycles.  

• At this juncture, any change management process would be very 

informal and adaptable. 

• It is expected that the final version will be created at some point.  

• This is the baseline, and it is effectively frozen.  

• Baselined products serve as the foundation for future product 

development.  

• As a result, any changes to the baselined document may have an 

impact on other parts of the project. 

• So, changes to baselined documents needs to be rigorously 

controlled. 

10.10.1 CHANGE CONTROL PROCEDURES 

• The steps involved are 

• Step 1 - A change may be perceived as necessary by one or more 

users.  

• Step 2 - User organization considers that the change is valid and 

noteworthy, and it is forwarded to development management.  

• Step 3 - A developer is tasked with determining the feasibility and 

cost of implementing the change.  

• Step 4 - Development management reports the cost of the change to 

user management, and user management decides whether to 

proceed.  

• Step 5 - A smaller group (Change Control Board) will be tasked 

with finalising changes up to a certain amount of expenses. 



 

 
223 

 

Monitoring and Control • Step 6 - One or maybe more developers are authorised to duplicate 

components that will be altered.  

• Step 7 - The Copies have been altered.  

• Step 8 - Following initial testing, a test version may be made 

available to users for acceptance testing.  

• Step 9 - When all users are satisfied, the operational release is 

authorised, and master copies of configuration items are replaced. 

10.10.2 CHANGES IN SCOPE OF A SYSTEM 

• This is referred to as software creep.  

• The size of the system progressively increasing is a common 

phenomenon in IS development projects.  

• Changes to requirements requested by users are one cause of this.  

• As a result, the project's scope must be carefully constantly 

monitored.  

• At key milestones, one method is to re-estimate the system size in 

terms of SLOC or FP. 

10.10.3 CONFIGURATION LIBRARIAN’S ROLE 

• The configuration librarian alternatively called project librarian or 

configuration manager is responsible for control of changes and 

documentation. 

• His duties would be 

• Recognizing items subject to change control.  

• The creation and upkeep of a centralised repository for master 

copies of software products and project documentation.  

• The establishment and operation of a formal set of procedures for 

dealing with changes.  

• The keeping of records regarding who has access to which library 

items and the status of every library item. 

10.11 SOFTWARE CONFIGURATION MANAGEMENT 

(SCM) 

• When we consider changes occurring on all work products and when 

there are numerous variants of the product, the manual change 

management process becomes overburdened.  

• In this case, a systematic software configuration management 

process with an effective methodology must be implemented.  



   

 
224 

Software Project  

Management 
 

 

224 

• SCM is involved with tracking and controlling software changes. 

• The various work products associated with software change on a 

regular basis in any development and maintenance environment.  

• Several issues can arise if an appropriate configuration management 

system is not deployed. 

10.11.1 CONTEXT IN WHICH CONFIGURATION 

MANAGEMENT IS NECESSARY 

• Work products are altered as development actions are performed out 

during the development phase.  

• The work products change during the maintenance phase due to 

different types of enhancements and adjustments, including bug 

fixes.  

• As a result, the state of work products is constantly changing and is 

referred to as a software product's configuration. 

• SCM is concerned with proficiently tracking and controlling a 

software product's configuration throughout its entire life cycle.  

• A configuration management tool must be deployed for effective 

configuration management. 

10.11.2 FEW TERMINOLOGIES 

• Configuration – The state of various work products under 

configuration control. 

• Version – The configuration of a software product changes as 

development and maintenance activities are performed on it. It is 

frequently necessary to refer to the configuration that existed at a 

specific point in time. A version is thus a configuration that existed 

at a specific point in time. 

• Revision – It is a numbering scheme used to identify the current 

state of a configuration item. 

• Baseline – A software configuration that has been formally 

reviewed and agreed upon and serves as the foundation for future 

development. 

• Variant – These are versions that are meant to coexist with one 

another. 

10.11.3 PURPOSE OF SOFTWARE CONFIGURATION 

MANAGEMENT 

• Proper configuration of work items is essential and if not carried out 

properly then it can lead to several problems such as 

• Problems associated with concurrent access - The ability to 

control access to various deliverable objects is possibly the most 

important reason for configuration management. Several issues can 



 

 
225 

 

Monitoring and Control arise if strict discipline is not enforced regarding the updating and 

storage of various work products. 

• Undoing Changes - It is simple to undo a portion of a revision or 

even roll back development to a previous version. It is extremely 

difficult to reverse a change unless a proper configuration 

management system exists. 

• System accounting - System accounting refers to the process of 

recording who made a specific change to a configuration item, what 

change was made, and when the change was made. Acknowledging 

why changes were made and whether some changes are redundant, 

as well as comparing the performance of different versions, will 

benefit from knowing the who, what, and when of changes. 

• Handling variants - It is frequently necessary to create variants. 

Keeping track of all variants, their versions, and revisions is a 

difficult task in this situation without a configuration management 

system.  

• Accurate determination of project status - Typically, a project 

manager will perform configuration management using a 

configuration management tool. Furthermore, a configuration 

management tool aids in the tracking of various deliverable objects, 

allowing the project manager to quickly and unambiguously 

determine the current state of the project. The configuration 

management tool allows the developer to make controlled changes 

to the various components. 

• Preventing unauthorized access to the work products - 

Configuration management aids in the implementation of a 

controlled change process. As a result, it is possible to prevent 

unauthorized changes to work products. 

10.11.4 CONFIGURATION MANAGEMENT PROCESS 

• It is accomplished through two primary activities: Configuration 

Identification and Configuration Control. 

• Typically, project managers divide the work products associated 

with a software development process into three categories: 

controlled, pre-controlled, and uncontrolled.  

• Controlled work products are those that have been configured. To 

change these, team members must follow some formal procedures.  

• Pre-controlled work products are not currently under configuration 

control but will be in the future.  

• Work products that are not controlled will not be subject to 

configuration control.  



   

 
226 

Software Project  

Management 
 

 

226 

• Work products that can be controlled include both controlled and 

pre-controlled work products. 

• Typical controllable work products include requirements 

specification document, design documents, tools used to build the 

system, source code for each module, test cases and problem reports 

• Configuration control is a component of a configuration 

management system that has the most significant impact on 

developers' daily operations.  

• Configuration control restricts unauthorized changes to controlled 

objects and allows only authorized changes.  

• Some members may be granted permission by the project manager 

to change or access specific work products.  

• To modify a controlled work product, such as a code module, a 

developer can obtain a private copy of the module via a reserve 

operation.  

• Configuration management tools limit the number of modules that 

can be reserved by a team member at any given time. 

 

Figure 10.12 – Work Product Modification in SCM 

• Once a work product is reserved, no one else will be able to reserve 

it until the reserved module is restored.  

• Thus, by preventing multiple developers from reserving a module at 

the same time, the problems associated with concurrent access are 

addressed. 

 



 

 
227 

 

Monitoring and Control 10.11.5 MODIFICATIONS TO WORK PRODUCT UNDER 

CONFIGURATION CONTROL 

• When a developer needs to make a change to a work product, they 

first submit a reserve request.  

• A team member's reserve request is honored only if the project 

manager has granted that member appropriate authorization for the 

specific work product.  

• Following the successful execution of the reserve command, a 

private copy of the work product is created in their local directory.  

• Then, on their private copy, they can make all necessary changes to 

the work product. 

• Once they have completed all necessary changes, the changes must 

be restored in the configuration management repository.  

• However, restoring the modified work product to the system 

configuration necessitates the approval of a Change Control Board 

(CCB). 

• The CCB is usually made up of members of the development team.  

• The CCB reviews the changes made to the controlled work product 

and certifies certain aspects of the change that needs to be carried 

out such as  

• Change is well-intentioned.  

• The effects of the change have been considered and documented by 

the developer.  

• Changes interact well with other developers' changes.  

• Appropriate individuals have validated the change. 

10.11.6 RELEASE MANAGEMENT 

• It is preferable for a software development project to implement an 

appropriate release management process.  

• It systematizes the work done by developers to include a new release 

of software, as well as the work done by users to obtain and use a 

new release smoothly and effortlessly.  

• The release process should require little action on the part of the 

developer to post a new release of software and little effort on the 

part of the users to download and install it. 

 



   

 
228 

Software Project  

Management 
 

 

228 

10.11.7 OPEN-SOURCE CONFIGURATION MANAGEMENT 

TOOLS 

• SCCS and RCS are popular configuration management tools found 

on nearly all UNIX systems.  

• It can be used to control and manage multiple versions of text files.  

• They do not work with binary files.  

• They provide an efficient method of storing versions that use the 

least amount of disc space.  

• Change control features include the ability to limit the number of 

people who can create new versions and the ability to check 

components in and out. 

10.12 SUMMARY 

• Planning is useless unless the plan's execution is monitored. 

• Longer activities should be subdivided to make them more 

manageable.  

• The delivery of project products should be used to gauge progress.  

• In order to effectively communicate information, progress must be 

visually appealing.  

• Costs, as well as elapsed time, must be tracked.  

• Delayed projects are frequently brought back on track by 

streamlining critical path activity times or comforting some 

precedence constraints. 

10.13 LIST OF REFERENCES 

•  “Software Project Management”, Sixth Edition, Bob Hughes, Mike 

Cotterell, Rajib Mall, Mc Graw Hill Education. 

• https://www.guru99.com/software-configuration-management-

tutorial.html 

• https://www.gristprojectmanagement.us/software/cost-

monitoring.html 

• https://www.jigsawacademy.com/blogs/data-science/earned-value-

analysis 

 

 

 

https://www.guru99.com/software-configuration-management-tutorial.html
https://www.guru99.com/software-configuration-management-tutorial.html
https://www.gristprojectmanagement.us/software/cost-monitoring.html
https://www.gristprojectmanagement.us/software/cost-monitoring.html
https://www.jigsawacademy.com/blogs/data-science/earned-value-analysis
https://www.jigsawacademy.com/blogs/data-science/earned-value-analysis


 

 
229 

 

Monitoring and Control 10.14 UNIT END EXERCISES 

1. The scenario is for removing bugs from the code. Which technique 

would be cost effective – Review or testing? State proper reasons. 

2. A work with a PV of £40,000 should have been completed by now. 

Some of that work is not done so EV is only £35,000. £55,000 had 

actually been spent to get that EV. Calculate SV and CV. Also 

calculate CPI and SPI. The budget at completion was £100,000. The 

planned total duration for the project was 23 months. Calculate EAC 

& TEAC. 

3. Suppose a project is to be completed in one year at the cost of 

£100,000. After 3 months, you realize that the project is 30% 

complete at the cost of £40,000. Assess the performance of the 

project. 

4. Identify other reasons why there is tendency for software creep. 

5. What are the pros and cons of putting all the work products in a 

project under configuration control? 

 



   

 
230 

Software Project  

Management 
 

 

230 

11 
MANAGING CONTRACTS 

Unit Structure 

11.0 Objectives 

11.1 Introduction 

11.2 Types of Contracts 

 11.2.1 Fixed price contracts 

 11.2.2 Time and Materials contracts 

 11.2.3 Fixed price per unit delivered contracts 

 11.2.4 Open tendering process 

 11.2.5 Restricted tendering process 

 11.2.6 Negotiated tendering process 

11.3 Stages in Contract Placement 

 11.3.1 Requirement Analysis 

 11.3.2 Evaluation plan 

 11.3.3 Invitation to tender (ITT) 

 11.3.4 Evaluation of proposals 

11.4 Typical terms of a Contract 

11.5 Contract Management 

11.6 Acceptance 

11.7 Summary 

11.8 List of References 

11.9 Unit End Exercise 

11.0 OBJECTIVES 

After going through this chapter, you will be able to understand  

• Types of contracts 

• Stages in contract placement 

• How to evaluate the aspects of a contract? 

• Major terminologies in a contract 

• How to administer a contract from signing to final acceptance till 

project end 



 

 
231 

 

Managing Contracts 11.1 INTRODUCTION 

• It is sometimes more cost-effective to hire outside software 

developers for new development while a smaller group of in-house 

software developers maintain and support existing systems.  

• When money is plentiful but other less flexible types of resources 

are scarce, purchasing goods and services rather than "doing it 

yourself" is appealing.  

• As a result, an acquisition project requires just as much thought and 

planning as an internal development project. 

• It is important that customer community find time to clarify the 

exact needs in the initial phase itself and then ensure that goods and 

services delivered be satisfactory. 

• The negotiating power of customer would be powerful if business is 

going to be valuable. 

• Probable suppliers will carefully assess the cost and time spent 

responding to client request as the final contract cannot be 

guaranteed. 

11.2 TYPES OF CONTRACTS 

• External resources may be required in the form of services.  

• A contract for a completed software package, on the other hand, 

could be placed as a  

• Bespoke system – It is created specifically for one customer  

• Off-the-shelf – It is purchased ‘as is'. It is referred as shrink-

wrapped software. 

• Customized off-the-shelf (COTS) – It is a core system 

customised to meet the needs of a specific customer. 

• When purchasing equipment, a contract for the supply of goods is 

typically used. 

• When it comes to software, this could be considered a service or the 

granting of a licence to use the software, which remains the 

supplier's property.  

• These distinctions have legal consequences. 

• Another classification of contracts based on the calculation of 

payment to suppliers is fixed price contracts, time and materials 

contracts and fixed price per unit delivered contracts. 



   

 
232 

Software Project  

Management 
 

 

232 

• Another approach of classification is based on contractor selection 

namely open, restricted, and negotiated tendering process. 

• We shall discuss the above two classifications in detail. 

11.2.1 FIXED PRICE CONTRACTS 

• When the contract is signed, the price is set.  

• The customer understands that if the contract terms are not changed, 

this is the price they will pay upon completion.  

• For this to work, the customer requirements must be established 

from the start.  

• Once development has begun, the customer cannot modify their 

prerequisites without renegotiating the contract price. 

• The advantages are known customer expenditure and supplier 

motivation. 

• The disadvantages of this techniques are higher prices to allow for 

contingency, difficulties in modifying requirements, upward 

pressure on the cost of changes and threat to system quality. 

11.2.2 TIME AND MATERIALS CONTRACTS 

• The customer is charged a fixed rate per unit of effort under this type 

of contract.  

• The supplier would provide an initial cost estimate depending on the 

current insight of the customer's requirements, but this does not 

constitute the grounds for the final payment.  

• Typically, the supplier bills the customer on a regular basis for work 

completed. 

• The advantages are ease of changing requirements and lack of price 

pressure. 

• The disadvantages are customer liability and lack of incentive for 

supplier. 

• Customers dislike this approach because it appears to give the 

supplier a blank check. 

• The hiring of contract development staff, on the other hand, may 

involve this type of contract. 

 

 

 



 

 
233 

 

Managing Contracts 11.2.3 FIXED PRICE PER UNIT DELIVERED CONTRACTS 

• It is frequently used in conjunction with function points (FP).  

• At the start of the project, the size of the system to be delivered is 

calculated or estimated.  

• The size could be estimated in terms of lines of code, but FPs can be 

derived more easily from requirements documents.  

• There is also a price per unit mentioned.  

• The unit price is then calculated by multiplying the number of units 

to arrive at the final price. 

• Consider the following table of schedule of charges per function 

point 

Table 11.1 - Schedule of charges per FP 

Function 

Point Count 

Function 

Design Cost 

per FP 

Implementation 

Cost per FP 

Total 

Cost per 

FP 

Up to 2000 $242 $725 $967 

2001 – 2500 $255 $764 $1019 

2501 – 3000 $265 $793 $1058 

3001 – 3500 $274 $820 $1094 

3501 – 4000 $284 $850 $1134 

• For example, a system to be implemented contains 2,600 FPs.  

• The overall charge is calculated as for first 2000 FPs = $967 x 2000 

= $1934000, for the next 500 FPs = $1019 x 500 = $509500 and for 

the last 100 FPs = $1058 x 100 = $105800. 

• So, charge for all 2600 FPs is sum of these which amounts to 

$2549300. 

• In the above scenario, the development factor i.e., FP count was 

fixed. 

• But there can be cases where we need to negotiate a series of 

contracts, each covering a different stage of system development. 

• For example, a software supplier might first carry out system design 

at 1000 FPs. Later the design was then implemented and the actual 

software delivered has 1000 FPs. The scope grew and new 

requirements amounted to 100 FPs.  

• In this case the overall charge is calculated as for designed system = 

$242 x 1000       = $242000, the for implemented system = $725 x 

1000 = $725000 and then for new requirements = $967 x 100 = 

$96700 



   

 
234 

Software Project  

Management 
 

 

234 

• So, the total charge for all operation amounts to $1063700. 

• The advantages of this scheme are customer understanding, 

comparability, emerging functionality, supplier efficiency and life-

cycle range. 

• The disadvantages are difficulties with software size measurement 

and changing requirements. 

• To address the last issue, one suggestion has been to vary the charge 

based on the point at which they are requested. 

Table 11.2 – Additional Charges for changed functionality 

 Pre acceptance 

testing handover 

Post acceptance testing 

handover 

Additional FPs 100% 100% 

Changed FPs 130% 150% 

Deleted FPs 25% 50% 

• For example, a contract stipulates that a computer application is to 

be designed, constructed, and delivered at a cost of $600 per FP. 

After acceptance testing, the customer asks for changes to some of 

the functions in the system amounting to 500 FPs and some new 

functions which amount to 200 additional FPs.  

• In this case the additional charges are calculated as for changed 

FPs= $600 x 500 x 150 / 100 = $450000 and for the additional 

FPs=$600 x 200 x 100 / 100 = $120000. 

• So, the total charge would be $570000. 

• There are additional payment options and permutations. 

• The implementation of a specification could be done at a fixed price, 

with any additions or changes to the requirements charged on a per-

FP basis. 

11.2.4 OPEN TENDERING PROCESS 

• In response to the invitation to tender, any supplier may submit a 

bid. 

• Tenders must all be evaluated in the same manner. 

• Local/international law (including EU and WTO, World Trade 

Organization, requirements) may compel government bodies to do 

so. 

• When client is a public body, then open tendering is a compulsory 

choice. 



 

 
235 

 

Managing Contracts 11.2.5 RESTRICTED TENDERING PROCESS 

• Only bids from suppliers who have been specifically invited by the 

customer are accepted in this case.  

• It has the potential to reduce the number of suppliers considered at 

any stage.  

• This is the best approach to implement. 

11.2.6 NEGOTIATED TENDERING PROCESS 

• Nevertheless, there may be some valid reasons why the restricted 

tendering process is not appropriate in certain situations.  

• In these cases, a single supplier approach may be justified.  

• We negotiate with a single supplier, for example, for extensions to 

previously supplied software.  

• Approaching a single supplier, on the other hand, may expose the 

customer to accusations of favoritism and should be done only with 

a sufficient explanation. 

11.3 STAGES IN CONTRACT PLACEMENT 

• Contract placement requires following four stages namely 

requirement analysis, evaluation plan, invitation to tender and finally 

evaluation of proposals. 

 

Figure 11.1 – Stages in Contract Placement 

11.3.1 REQUIREMENT ANALYSIS 

• Before we could even approach potential suppliers, we must have a 

concise set of requirements.  

• A requirements document could even be created by an outside 

consultant.  



   

 
236 

Software Project  

Management 
 

 

236 

•  “The lack of or defects in specification are probably at the heart of 

most disputes resulting from the acquisition of computer equipment 

and software,” writes David Bainbridge. 

• A sample requirements document would contain the following 

sections 

 

Figure 11.2 – Sample Requirements Document 

• The requirements carefully define the functions that must be 

performed by the new application, as well as all of the necessary 

inputs and outputs for these functions.  

• The requirements should also include any standards that must be 

met, as well as any existing systems that must be compatible with 

the new system.  

• In addition to these functional requirements, there will be 

operational and quality requirements concerning the new system's 

required response times, reliability, usability, and maintainability. 

• Each requirement must be classified as either mandatory or 

desirable. 

• Mandatory - If a proposal does not meet this requirement, it 

will be rejected immediately. There would be no need for 

additional testing. 

• Desirable - A proposal may be lacking in this area, but other 

aspects of the proposal may compensate. 

• Requests for any information needed to help us judge the standing of 

the organization itself should be included among the other details 

that will be included in the requirements document to be provided to 

potential suppliers. 

• This could include financial reports, customer references, and the 

CVs of key development personnel. 

 



 

 
237 

 

Managing Contracts 11.3.2 EVALUATION PLAN 

• After developing the requirements, we need to devise a strategy for 

evaluating proposals. 

• The scenario will be different if the contract is for a custom-written 

system instead of an off-the-shelf package.  

• In the latter case, it is application evaluation, whereas in the former, 

it is proposal evaluation. 

• Methodologies for ensuring that the mandatory requirements are met 

must be identified.  

• The next point to consider is how the desirable requirements can be 

assessed. The issue here is balancing the importance of one quality 

against another.  

• The ISO 9126 standard can help us determine whether one system 

has more of a certain quality than another, but if there is a price 

difference between the two, we must determine whether the increase 

in quality is worth the extra cost. 

• The requirement to evaluate value for money (VFM) for each 

desirable feature.  

• The VFM approach improves on the previous emphasis on accepting 

the lowest bid. 

• For example, a feeder file saves data input. The clerical effort is 4 

hours work a month saved at £20 an hour and system to be used for 

4 years. Cost of feature £1000. 

• So, would it be worth it? 

• We calculate the cost over a 4-year period as £20 x 4 x 48 = £3840. 

• So, system A with this feature costs £1000 more than system B. 

• But this gives an added advantage to system A. 

• The costs to be considered are those for the entire lifetime of the 

proposed system, not just the costs of acquisition.  

• Furthermore, where the relationship with the supplier is likely to be 

ongoing, the supplier organization as well as its products must be 

evaluated. 

11.3.3 INVITATION TO TENDER (ITT) 

• After completing the requirements and the evaluation plan, the 

invitation to tender can be issued to prospective suppliers.  



   

 
238 

Software Project  

Management 
 

 

238 

• Essentially, this will be the requirement document accompanied by a 

supporting letter that may include additional information about how 

responses to the invitation should be submitted.  

• A deadline will be set, and it is hoped that by that time, several 

proposals with price quotes will have been received. 

• In English law, there should be a deal on one side that is accepted by 

the other side for a contract to exist.  

• The invitation to tender is not an offer in and of itself, but rather a 

request for prospective suppliers to make an offer.  

• Certain new issues have emerged. The requirements that have been 

established may be met in a variety of ways.  

• The customer needs to know not only a potential supplier's price, but 

also how they intend to meet the requirements - this is especially 

important if the contract is to build a new system from the ground 

up. 

• In the first stage, potential suppliers are asked to submit technical 

proposals.  

• This approach does not necessitate quoting any prices at this time. 

Some of these proposals may be recommended by the but rejected 

outright because they do not meet the mandatory requirements.  

• Certain aspects of the suppliers' proposals may be required to be 

demonstrated.  

• If flaws in the proposal are discovered, the supplier may be given the 

opportunity to correct them. 

• These discussions may result in a Memorandum of Agreement 

(MoA) with each prospective supplier.  

• This is the customer's acknowledgement that the proposed solution 

offered by the supplier meets the customer's requirements 

satisfactorily.  

• Tenders are welcomed from all suppliers who have signed 

independent Memorandums of Agreement in the second stage.  

• The MoA would be included in the tender, which would be 

concerned with the financial terms of a potential contract. 

• If a design must be produced as part of a supplier's proposal in 

response to an invitation to tender, the supplier will have to do a 

significant amount of detailed design work with only a small chance 

of being paid for it.  



 

 
239 

 

Managing Contracts • One way to alleviate this burden is for the customer to select a small 

number of likely candidates who will be compensated for producing 

design proposals.  

• These can then be compared, and the most appealing proposal will 

be awarded the final construction contract.  

• ISO 12207 takes a different approach.  

• Once a contract for software development is signed, the supplier 

creates a design that must be approved by the customer. 

11.3.4 EVALUATION OF PROPOSALS 

• This must be done methodically and strategically.  

• We have already mentioned the need for an evaluation plan, which 

will outline how each proposal will be scrutinized to ensure that it 

meets all of the requirements.  

• This reduces the possibility of missing requirements and ensures that 

all proposals are treated consistently.  

• Otherwise, there is a risk that a proposal will be unfairly favored 

because it includes a feature that was not specified in the original 

requirement. 

• It should be remembered that an application can be bespoke, off-the-

shelf, or customized.  

• In the case of off-the-shelf packages, the software itself would be 

evaluated, and it may be possible to combine some of the evaluation 

with acceptance testing.  

• In the case of bespoke development, a proposal is evaluated, 

whereas COTS may include elements of both.  

• As a result, different approaches would be required in each case. 

• The process of evaluation may include scrutiny of the proposal 

documents, interviewing suppliers' representatives, demonstrations 

and practical tests. 

• Supplier proposal documents can be scrutinized to see if they 

contain features that meet all of the original requirements.  

• Clarification on certain points may be required. Any true statements 

made by a supplier imply a legal commitment on their part if they 

persuade the customer to award the contract to that supplier.  

• As a result, it is critical to obtain a written, agreed-upon record of 

these clarifications. 



   

 
240 

Software Project  

Management 
 

 

240 

• If the delivered product is to be based on an existing product, a 

demonstration may be possible.  

• Demonstrations pose the risk of being controlled by the supplier, and 

as a passive observer, it is often difficult to maintain full attention.  

• As a result, the customer should create a schedule of what needs to 

be demonstrated, ensuring that all key features are seen in action.  

• It should be possible to gain actual access to the application using 

off-the-shelf software. 

• A common issue is that while an existing application performs well 

on one platform with a certain level of operations, it does not work 

satisfactorily on the customer's platform or at the level of throughput 

that it would be subjected to in the customer's work environment.  

• Demonstrations, in general, will not reveal this issue.  

• Visits to operational sites where the system is already in use will be 

more informative in this regard.  

• As a last resort, a special volume test could be performed. 

• A decision will be made eventually to award the contract to one of 

the suppliers. One of the primary reasons for using a structured and, 

to the greatest extent possible, objective approach to evaluation is to 

be able to demonstrate that the decision was made impartially and on 

merit.  

• In most large organizations, placing a contract requires the 

involvement of a third party within the organization, such as a 

contracts department, who can ensure that the proper procedures are 

followed.  

• In addition, the final legal format of a contract will almost certainly 

necessitate the use of legal expertise. 

• In any scenario, not only should the successful candidate be alerted, 

but so should the unsuccessful candidates. 

• Legal advice on contract terms is essential when large sums of 

money are involved. 

11.4 TYPICAL TERMS OF A CONTRACT 

• It is unrealistic to expect a project manager to be a legal expert.  

• He requires assistance. 

• However, he must ensure that the contract reflects the true 

requirements and expectations of both the supplier and the client. 

• So, the various terms used in contract checklist are as follows 



 

 
241 

 

Managing Contracts • Definitions - The contract document's terminology, for 

example, who is meant by the words 'client' and 'supplier' may 

need to be defined. 

• Form of agreement - Is it, for example, a contract of sale, a 

lease, or a licence? Also, can the contract's subject matter, 

such as a licence to use a software application, be transferred 

to a third party? 

• Goods and services to be supplied - It is necessary to provide 

equipment and software. This includes a detailed list of the 

individual pieces of equipment that will be delivered, complete 

with model numbers. Services to be rendered. Documentation, 

installation, conversion of existing files, maintenance 

agreements, and transitional insurance arrangements are all 

covered. 

• Ownership of software - Who is the owner of the software? 

There are two major issues to consider here: first, whether the 

customer can sell the software to others, and second, whether 

the supplier can sell the software to others. When it comes to 

off-the-shelf software, the supplier frequently simply grants 

you a licence to use the software. When software is written 

specifically for a customer, that customer will usually want 

exclusive use of the software; they may object to software that 

they hoped would give them a competitive advantage being 

sold to their competitors. When software is written by an 

employee as part of a job contract, it is assumed that the 

employer owns the copyright. Where the customer 

organisation has contracted an external supplier to write 

software, the contract must specify who will retain the 

copyright - it cannot be assumed in this case that it is the 

customer. 

• Environment - When installing physical equipment, the 

demarcation line between the supplier's and customer's 

responsibilities for things like accommodation and electrical 

supply must be specified. Where software is delivered, the 

software's compatibility with existing hardware and operating 

system platforms must be confirmed. 

• Customer commitments - Even when work is done by 

outside contractors, the customer must still be involved in the 

development process. The customer will be required to 

provide accommodation for the suppliers as well as possibly 

other facilities such as phone lines. 

• Acceptance procedures - It is best practise to accept a 

delivered system only after it has undergone user acceptance 

testing. This section of the contract would include information 

such as how much time the customer will have to conduct the 

tests, the deliverables on which the acceptance tests will be 



   

 
242 

Software Project  

Management 
 

 

242 

based, and the procedure for signing off on the testing as 

completed. 

• Standards - This covers the standards that the goods and 

services must meet. Some customers complain that the 

supplier does not thoroughly test specially written or modified 

software before delivery. Some suppliers appear to believe that 

it is less expensive to have the customer do the testing for 

them. 

• Project and quality management - The project management 

arrangements must be agreed upon. These would include the 

frequency and nature of progress meetings, as well as the 

progress information to be provided to the customer. The 

contract could specify that ISO 9000-series standards be 

followed. The ISO 12207 standard requires the customer to 

have access to quality documentation generated internally by 

the supplier in order to ensure standard adherence. 

• Timetable - This provides a timeline for when the major 

components of the project should be completed. This schedule 

binds both the supplier and the customer. 

• Price & Payment method - Obviously, the cost is critical! 

When the payments are to be made must also be agreed upon. 

The supplier's preference to meet costs as they arise must be 

balanced against the customer's commitment to protect those 

goods and services are satisfactory before dividing with their 

money. 

• Miscellaneous legal requirements - This is the legal 

stipulation. Contracts frequently include clauses that address 

issues such as the legal jurisdiction that will apply to the 

contract, the conditions that will apply to the subcontracting of 

the work, liability for third-party damage, and liquidated 

damages. Liquidated damages are estimates of the customer's 

financial losses if the supplier fails to meet their obligations. If 

there is a disagreement, resorting to litigation, while profitable 

for the lawyers involved, is both time-consuming and costly. 

Another option is to agree to have disputes resolved through 

arbitration. This necessitates the referral of any dispute to an 

expert third party whose decision on the facts of the case is 

binding. Even this procedure is rarely quick and cheap, and 

another option is alternative dispute resolution, in which a 

third-party act as a mediator with only advisory powers and 

attempts to broker an agreement between the two parties. 

11.5 CONTRACT MANAGEMENT 

• We must now consider the communications between the supplier 

and the customer while the work is being completed.  



 

 
243 

 

Managing Contracts • It would probably be in everyone's best interests if the contractor 

could be left alone to finish the job.  

• However, at certain decision points, the customer must review 

previous work and make decisions about the project's future 

direction.  

• The project will necessitate interactions between supplier and 

customer representatives at various stages of the development cycle. 

• This interaction, or other external factors, frequently necessitate 

changes, which effectively change the terms of the contract, 

necessitating a careful change control procedure. 

• When negotiating a contract, certain key points in the project can be 

identified where customer approval is required before the project can 

move forward. 

• When work is outsourced, there will be widespread concern about 

the quality of that work.  

• The ISO 12207 standard allows for the possibility of agents working 

independently of the supplier or customer to perform verification, 

validation, and quality assurance.  

• It also permits joint reviews of project processes and products, the 

nature of which must be clearly agreed upon when the contract is 

negotiated, or the supplier may claim unwarranted interference in 

their work. 

• As the system evolves, it is common for the need to change some of 

the requirements. 

• To record requests for changes, as well as the supplier's agreement 

to them and any fees for the additional work, an effective change 

control procedure is required. 

• It is possible that the supplier will fail to meet one or more of their 

legal obligations. 

• As a result, the customer should protect their legal rights by alerting 

the supplier as quickly as possible that the failure has been 

identified. 

11.6 ACCEPTANCE 

• When the work is finished, the customer must take action to perform 

acceptance testing.  

• Because the contract may specify a time limit for how long 

acceptance testing can take, the customer must be prepared to 

complete this testing before the time limit for requesting corrections 

expires.  



   

 
244 

Software Project  

Management 
 

 

244 

• Some software companies are rather hurried with their pre-

acceptance testing, with the implication that they would rather have 

users spend their time testing than they do.  

• This imposition can be mitigated by requesting approval of the 

supplier's internal test plans. 

• A related stumbling block is that once the main development work is 

completed, the supplier will naturally want to reassign the most 

productive employees to other projects.  

• All of the customer's problem reports may be handled by relatively 

junior members of the supplier's staff who may not be familiar with 

all aspects of the delivered system. 

• Part or all of the payment to the supplier will be contingent on the 

results of this acceptance testing.  

• A portion of the final payment is sometimes retained for a period of 

operational running and is eventually paid over if the levels of 

reliability are as contracted.  

• There is usually a warranty period during which the supplier should 

fix any errors discovered at no cost. 

• The supplier may propose a very short warranty period, such as 30 

days.  

• It is in the best interests of the customer to negotiate a more realistic 

period of at least 120 days. 

11.7 SUMMARY 

• Successful contracting out of work necessitates a significant amount 

of management time.  

• Before a contract is signed, it is easier to obtain concessions from a 

supplier than afterward.  

• Alternative proposals should be evaluated as thoroughly as possible 

by comparing costs over the system's entire lifetime rather than just 

the acquisition costs.  

• A contract imposes obligations on both the customer and the 

supplier.  

• Contract negotiations should include reaching an agreement on how 

the supplier -customer relationship will be managed during the 

project's execution. 

 



 

 
245 

 

Managing Contracts 11.8 LIST OF REFERENCES 

•  “Software Project Management”, Sixth Edition, Bob Hughes, Mike 

Cotterell, Rajib Mall, Mc Graw Hill Education. 

• https://www.aresprism.com/guides/contract-management-guide 

• https://www.upcounsel.com/types-of-contracts-in-software-project-

management 

• https://www.greycampus.com/blog/project-management/different-

types-of-contract-&-project-management 

11.9 UNIT END EXERCISES 

1. A system to be designed and implemented is counted as comprising 

3200 FPs. What would be the total charge according to the schedule 

in table? 

2. A contract stipulates that a computer application is to be designed, 

constructed, and delivered at a cost of $650 per FP. After acceptance 

testing, the customer asks for changes to some of the functions in the 

system amounting to 550 FPs and some new functions which 

amount to 250 additional FPs. Using the table, calculate the 

additional charge. 

3. How would you evaluate the following aspects of a proposal? 

a. The usability of an existing software application 

b. The usability of a software application which is yet to be 

designed and constructed. 

c. The maintenance costs of hardware to be supplied 

d. The time taken to respond to requests for software support 

e. Training  

4. List the various typical terms of a contract? 

5. Explain the different stages in contract placement. 

 

https://www.upcounsel.com/types-of-contracts-in-software-project-management
https://www.upcounsel.com/types-of-contracts-in-software-project-management


   

 
246 

Software Project  
Management 

246 

12 
MANAGING PEOPLE IN SOFTWARE 

ENVIRONMENT 
Unit Structure 

12.0 Objectives 

12.1 Introduction 

12.2 Understanding Behaviour 

12.3 Organizational Behavior: A Background 

12.4 Selecting the Right Person for the Job 

 12.4.1 Recruitment Process 

12.5 Instruction in the Best Methods 

12.6 Motivation 

 12.6.1 Taylorist Model 

 12.6.2 Maslow’s hierarchy of needs 

 12.6.3 Herzberg’s two factor theory 

 12.6.4 Expectancy theory of Motivation 

12.7 Oldham-Hackman Job Characteristics Model 

 12.7.1 Methods of improving motivation 

12.8 Stress 

12.9 Stress Management 

 12.9.1 Categories of Stress Management 

12.10 Health and Safety 

12.11 Some Ethical and Professional Concerns 

12.12 Summary 

12.13 List of References 

12.14 Unit End Exercise 

12.0 OBJECTIVES 

After going through this chapter, you will be able to understand  

• The impact of people behavior in project 

• Selection between eligible and suitable candidate 

• How to conduct recruitment process 

• How to handle stress 

• Ethical and professional concerns related to people and project 



 

 
247 

 

Managing People in 

Software Environment 

12.1 INTRODUCTION 

• There are four major issues to be concerned about namely staff 

selection, staff development, staff motivation and maintaining staff 

well-being throughout the course of a project. 

• The Step Wise Framework approach has impact of people in several 

step. 

• Some project objectives can address health and safety (Step 1). 

• Although project leaders may have little control over organisational 

structure, they must be aware of its implications (Step 2). 

• The scope and nature of activities can be set in such a way that staff 

motivation is enhanced (Step 4). 

• Many risks to project success are related to staffing (Step 6).  

• When allocating staff to activities, the qualities of individual 

members of staff should be considered (Step 7). 

 

Figure 12.1 – Staffing Concerns in Step Wise Framework 



   

 
248 

Software Project  
Management 

248 

12.2 UNDERSTANDING BEHAVIOUR 

• People with practical project management experience undoubtedly 

identify people management as one of the most essential parts of 

project management.  

• Organizational behaviour (OB), a branch of social science, can be 

useful.  

• This has resulted in theories that attempt to explain people's 

behaviour and are typically structured as 'If A is the situation, then B 

is likely to result.'  

• A key concern is that in the actual world, there will almost certainly 

be a wide range of influences on a situation, many of which will be 

invisible to the observer.  

• As a result, determining which set of research findings is pertinent is 

difficult. 

• The risk is that we will end up with a set of dictums that are no 

better than superstitions.  

• However, it is hoped that by investigating these questions, people 

will become more sensitive and thoughtful about the issues at hand. 

• Individual and group behaviour research in software and ICT 

development environments must use social science research 

methods. 

• The Positivist approach and the Interpretivist Approach are two 

approaches to establishing the relationship. 

• The positivist approach is characterised by a mindset that favours 

experimentation as a means of establishing relationships between 

inputs and outputs.  

• This model has been attempted to be extended to the social system.  

• An interpretivist school of thought differs from a positivist one, 

particularly in terms of applying quantitative and experimental 

methods from the physical sciences to people and organisations.  

• Many concepts, according to interpretivists, are not objective but 

rather inter-subjective creations of humans. 

• Both positivist and interpretivist perspectives can be valid and 

useful.  

• The quantitative type predominates in the types of research that 

underpin the material on individuals in the workplace. 



 

 
249 

 

Managing People in 

Software Environment 

12.3 ORGANIZATIONAL BEHAVIOR: A 

BACKGROUND 

• The origins of OB research can be traced back to Frederick Taylor's 

work in the late nineteenth and early twentieth centuries.  

• He attempted to figure out the most productive way to do these tasks 

by studying how manual workers did them.  

• The workers were then taught how to do the work in this manner.  

• Taylor had three main goals: 

• to choose the best person for the job 

• to train such people in the best methods 

• to reward the best workers with higher wages. 

• Taylorism is frequently portrayed as crude and mechanistic these 

days.  

• However, the concern about identifying best practises is legitimate 

such as structured and agile methods. 

• During the 1920s, OB scientists found, while conducting a now-

famous set of tests on the conditions for which staff worked best, 

that not only did a group of workers whose conditions were 

improved increase their work-rates, but so did a control group whose 

conditions remained unchanged.  

• Simply caring about what employees did increased productivity.  

• This demonstrated how workers' mental states influenced their 

productivity. 

• Some managers' cash-oriented view of work can thus be contrasted 

with a more refined view of people in their workplace.  

• Donald McGregor labelled the two attitudes as Theory X and 

Theory Y. 

• According to Theory X, the average human has an innate dislike of 

work; as a result, there is a need for coercion, direction, and control; 

and people tend to avoid responsibility. 

• Theory Y, on the other hand, holds that: work is as intuitive as rest 

or play; external control and coercion should not be the only ways to 

elicit effort directed toward the company's goals; commitment to 

goals is a function of the rewards associated with their 

accomplishment; the average human can try to accept and seek 



   

 
250 

Software Project  
Management 

250 

responsibility; and the ability to exercise creativeness and other 

creative abilities. 

• One way to determine whether a manager believes in Theory X or 

Theory Y is to perceive how the manager's staff reacts when the 

boss is absent: if there is no perceivable change, the environment is 

Theory Y; if everyone visibly relaxes, the environment is Theory X.  

• McGregor's distinction between the two theories also emphasises 

how expectations influence behaviour.  

• If a manager (or teacher) expects you to work hard and do well, you 

are more likely to try to meet those expectations. 

12.4 SELECTING THE RIGHT PERSON FOR THE JOB 

• Taylor emphasised the importance of hiring the right person for the 

job. Many factors influence programming productivity, including the 

use of software tools and methodologies.  

• Individual differences in software development performance, on the 

other hand, are one of the most pronounced.  

• A contrast of experienced professional programmers working along 

the same programming task in 1968 discovered a ratio of 1:25 

between the shortest and longest time to code the code and, perhaps 

more importantly, a ratio of 1:28 for the time required to debug it. 

• Questions in mind while selecting the right person could be 

• What kinds of qualities should they be looking for?  

• Should they hire an experienced programmer or a recent 

graduate with a first-rate mathematics degree, for example? 

• It is highly risky to generalise, but when particularly looking at 

behavioural traits, American researcher Cheney discovered that the 

most significant effect on programmer productivity appeared to be 

experience.  

• In comparison, mathematical competence had a negligible influence. 

• Couger and Zawacki, two American researchers, discovered that 

computer workers appear to have significantly lower social needs 

than people in other professions.  

• They quote Gerald Weinberg, who says, 'If asked, most 

programmers probably say they chose to work alone where they are 

not disturbed by other people.'  

• This is reflected in the issue that people who are drawn to and 

skilled at writing software would not make good managers later in 

their professions. 

• Later polls found no statistically significant discrepancies between 

IS and other staff. 



 

 
251 

 

Managing People in 

Software Environment 

• This could be explained by the fact that in recent years, IS has 

become wider and less solely technical. 

12.4.1 RECRUITMENT PROCESS 

• Recruitment may be regarded as an organizational responsibility.  

• We may be currently seeking someone who will work in many 

different parts of the same organization over time. 

• Meredith Belbin makes an important distinction between eligible 

(qualified) and suitable candidates.  

• A qualified candidate is one whose curriculum vitae also referred as 

resume shows, for example, the right number of years in some 

previous position and the right paper qualifications.  

• Suitable candidates are those who are capable of performing the job 

well.  

• A common misperception is to choose a qualified candidate who is 

not actually suitable.  

• Suitable candidates who are not technically eligible can on the other 

hand, be ideal candidates because they are more likely to remain 

loyal to the organization once in position. 

• Belbin suggests that selection methods that focus on real skills rather 

than past experience, as well as an eagerness to provide training to 

fill minor gaps in expertise, can be more effective in placing suitable 

staff.  

• It also appears to demonstrate that policies that prohibit 

discrimination on the basis of race, gender, age, or irrelevant 

disabilities can be both socially responsible and effective 

recruitment strategies. 

• As the name implies, the recruitment and selection process begin 

with recruiting candidates and ends with selecting a candidate to 

hire.  

• Being thorough and following each step can result in more 

successful hires and retention rates. 

• Examine the following steps in the recruitment and selection 

process: 

• Obtain a job order - When we obtain a job order from a 

client, we can begin the recruiting process. A job order should 

include information about the position being filled as well as a 

well-written job description. The job description should inform 

potential candidates about everything they need to know about 

the position, including job title, job description in detail, 

qualifications that are required and preferred, location and 

salary scale. Consider rewriting the job description if it does 

not provide enough information or is not written in a way that 

will attract top talent. 



   

 
252 

Software Project  
Management 

252 

• Source candidates - The next step in the recruitment and 

selection process is to source candidates once you have a 

thorough understanding of the open position. We can find 

passive and active candidates in a variety of ways. Active 

candidates are those who are actively looking for work, 

whereas passive candidates are those who are not. Successful 

recruiters can find both types of candidates. We can find 

candidates using the appropriate tools and recruitment sources: 

Online job boards, social media, a recruiting database, and 

referrals. 

• Screen applicants - Applicants must be screened as part of the 

recruitment and selection process. This is where you can learn 

more about each applicant, allowing us to narrow down the 

pool. We can perform telephone screenings with a variety of 

pre-screening interview questions. Ask behavioral interview 

questions during screenings to learn more about the 

candidate's personality and how they would function in the 

open position. Inquire about the candidates' backgrounds, 

including their work history and career goals. Check to make 

sure they understand the job description and are qualified. 

Interviews over the phone should last about 30 minutes. Even 

if they are not as long as a full interview, we can learn enough 

to help narrow down candidates. To rank candidates and keep 

track of their responses, create a candidate scorecard. Take 

notes so you can compare candidates after spoken with them 

all. 

• Shortlist candidates - The procedure of advancing a few 

candidates from the pool is known as recruitment shortlisting. 

The shortlisted candidates should consist of no more than three 

people. These are the contenders we want to invite for client's 

face-to-face interview. Narrowing down the candidate pool 

can be difficult because we don’t want to advance the wrong 

candidates. Take the time to learn about each candidate's 

experiences, qualifications, and personality so we can be 

confident we have chosen the right people to shortlist. 

• Interview candidates - After we have narrowed down the 

candidates, we must provide their contact information to the 

client. The candidates will then be interviewed by the client. 

During interviews, we should typically be present to take 

notes, ask questions, and give opinion afterward. The face-to-

face interview allows client to get to know the candidates on a 

more personal level. We can observe their body language and 

conduct additional behavioral interviews with them. The 

interview process allows to gauge a candidate's work ethic. 

Again, use an interview scorecard to rank and compare 

candidates. Candidates should be ranked based on their 

experience, education, and skills. 



 

 
253 

 

Managing People in 

Software Environment 

• Conduct testing - The client may want to consider conducting 

job-fit tests to further assess a candidate's abilities. A job-fit 

assessment test assists the client in determining how well the 

candidate would fit into the company. A job-fit test can last 

from 30 minutes to an hour. It asks a series of questions to 

which candidates must honestly respond. Each candidate 

should also be subjected to a background check. Furthermore, 

we must check references to confirm information and learn 

more about their character and work ethic. 

• Extend a job offer - The final step in the selection process is 

to choose a candidate. Extend the job offer to the candidate 

they are interested in hiring. The candidate may attempt to 

negotiate the salary offered by the client. Consult with the 

client to see if the requested salary is feasible. If the candidate 

falls the job offer, we will need to either return to the other top 

candidates or restart the recruitment and selection process. 

12.5 INSTRUCTION IN THE BEST METHODS 

• This is the second of Taylor's concerns that we have adopted.  

• When a new team member is hired, the team leader must carefully 

plan that person's integration into the team.  

• This may be difficult if the project is already well underway.  

• However, the steps should be taken because it will eventually pay 

off because the new recruit will become a fully functional member 

of the team more rapidly. 

• The team leader should also be able to understand the importance of 

constantly assessing the training requirements of their team 

members.  

• Just as we create a user requirement before considering a new 

system and a job holder profile before hiring a new employee, we 

also create a training needs profile for each staff member before 

considering specific courses.  

• Commercial training companies could provide some training. 

• Where money is limited, other sources of training should be 

considered; however, training should not be abandoned entirely, 

even if it consists of a team member being told to learn about a new 

software tool and then demonstrate it to colleagues.  

• Of course, the methods learned must be put into practise.  

• This should be ensured through reviews and inspections. 

 

 



   

 
254 

Software Project  
Management 

254 

12.6 MOTIVATION 

• Motivation is the third factor as projected by Taylor. 

• It is the driving force by which people achieve their goals. 

• There are several models for motivation followed in software 

development practices such as Taylorist model, Maslow hierarchy of 

needs, Herzberg two factor theory and Expected theory of 

motivation. 

12.6.1 TAYLORIST MODEL 

• Taylor's point of view is represented in the use of piece-rates in 

manufacturing and sales bonuses among sales forces.  

• A problem that projects leader must be aware of is that piece-rates 

frequently cause difficulties when implementing a new system that 

changes work practices.  

• If new technology improves productivity, the question of lowering 

piece rates to reflect this will be a delicate one.  

• Workers on piece-rates are paid a set amount for each item 

produced.  

• Payment for time worked is referred to as a day rate.  

• Typically, drastic changes in work practices must be preceded by a 

shift from piece-rates to day-rates. 

• The norms of the group even when work practices are stable and 

output can be easily linked to reward, as discussed further under 

people paid by the amount they produce, group decision making will 

not be maximized.  

• In order to maximize their income, they must maximize their output.  

• The amount of output is frequently constrained by 'group norms,' 

which are informal, even unspoken, agreements among colleagues 

about how much to produce.  

• Rewards must be directly related to the work produced in a simple 

and direct manner. 

• This is not an easy task when creating a computer system.  

• It is difficult to isolate and quantify work done, particularly because 

system development and support is a collaborative effort. 

• A reward system that makes inordinate distinctions between work 

colleagues can be detrimental to morale and, eventually, 

productivity in this type of environment. 



 

 
255 

 

Managing People in 

Software Environment 

12.6.2 MASLOW’S HIERARCHY OF NEEDS 

• Maslow's hierarchy of needs is a motivational theory in psychology 

that consists of a five-tier model of human needs, which is 

frequently depicted as hierarchical levels within a pyramid. 

• The needs are listed in the following order: physiological (food and 

clothing), safety (job security), love and belonging needs (social), 

esteem, and self-actualization. 

• Lower-level needs must be met before individuals can attend to 

higher-level needs. 

• This five-stage model is divided into two parts: deficiency needs and 

growth needs. The first four levels are known as deficiency needs 

(D-needs), while the top level is known as growth or being needs (B-

needs).  

• Deficiency needs arise as a result of deprivation and are said to 

motivate people when they go unsatisfied.  

• Furthermore, the motivation to meet such needs grows stronger the 

longer they are denied.  

• Growth needs arise from a desire to grow as a person, not from a 

lack of something.  

• Once these growth needs are reasonably met, one may be able to 

achieve the highest level known as self-actualization. 

• Maslow observed that the hierarchy of needs may be flexible 

depending on external circumstances or individual differences. 

surpass even the most basic requirements  

• Maslow also stated that most behavior is multi-motivated and that 

“Any behavior tends to be determined by several or all of the basic 

needs concurrently rather than by only one of them.” 

 

Figure 12.2 – Maslow’s Hierarchy of Needs 



   

 
256 

Software Project  
Management 

256 

12.6.3 HERZBERG’S TWO FACTOR THEORY 

• Certain aspects of a job may make you unhappy.  

• If the sources of this dissatisfaction are addressed, the job will not 

necessarily become more exciting.  

• According to Herzberg and his associates research into job 

satisfaction, there appeared to be two sets of factors about a job that 

were vital 

• Hygiene or maintenance factors can make you displeased if 

they are not right, such as the level of pay or working 

conditions.  

• Motivators can make you feel that the job is worthwhile such 

as a sense of accomplishment. 

12.6.4 EXPECTANCY THEORY OF MOTIVATION 

• This is illustrated by a motivation method designed by Vroom and 

his colleagues. 

• It outlines three motivational influences: 

• Expectancy – It is the presumption that working harder will 

result in improved performance. 

• Instrumentality – It is the presumption that improved 

performance will be rewarded. 

• Perceived value – It is the perceived value of the resulting 

reward. 

• When all three factors are present, motivation will be high.  

• A zero for any of the factors can result in a lack of motivation. 

12.7 OLDHAM-HACKMAN JOB CHARACTERISTICS 

MODEL 

• Managers should attempt to group the elements of the tasks that 

must be completed so that they form meaningful and satisfying 

assignments.  

• According to Oldham and Hackman, job satisfaction is based on five 

factors. 

• The first three factors contribute to the job being meaningful to the 

person doing it: 

• Skill variety – It represents the myriad of alternative skills that the 

job holder has the opportunity to exercise. 



 

 
257 

 

Managing People in 

Software Environment 

• Task identity - the intensity to which your work and its 

outcomes can be identified as yours 

• Task significance -The degree to which your job has an 

impact on others.  

• The other two factors are: 

• Autonomy – It is the freedom to choose how you do your job. 

• Feedback - The information you receive about the outcomes 

of your work. 

• In practise, activities should be designed in such a way that 

employees can track the progress of a specific product and feel 

personally connected to it. 

12.7.1 METHODS OF IMPROVING MOTIVATION 

• To improve motivation, the manager does 

• Selling specific objectives - These objectives must be 

challenging while also being acceptable to the staff. Involving 

employees in the development of goals aids in their 

acceptance. 

• Providing feedback - Goals must be set, but employees must 

also receive regular feedback on how they are progressing. 

• Job creation - Jobs can be changed to make them more 

interesting and to give employees a greater sense of 

responsibility. 

• Job enlargement and job enrichment are required to measure and 

enhance job design. 

• In job enlargement, as employees perform a broader range of 

activities, the job's scope expands.  

• It is the inverse of increasing enrichment, which is based on 

specialisation. 

• In the case of job enrichment, the job is altered so that the holder 

performs tasks that would normally be performed at a relatively 

high, managerial level. 

• Employees may be assigned responsibility for ordering 

consumables, scheduling their work, or quality control.  

• A programmer on a maintenance team may be given authority to 

accept requests for changes that require less than five days of work 

without requiring their manager's approval. 



   

 
258 

Software Project  
Management 

258 

12.8 STRESS 

• Projects are about overcoming adversity and reaching goals.  

• Both the project manager and the members of the team will be under 

duress.  

• According to Edward Yourdon, a project manager, “Once a project 

gets going, you should expect members to put in at least 60 hours 

per week." The project manager should plan on working as many 

hours as possible”. 

• Some stress is actually beneficial.  

• Many jobs can be soul-destroying due to boredom.  

• However, once you reach a certain level of stress, the quality of your 

work suffers, and your health suffers.  

• In a 1960 study in the United States, it was discovered that people 

under the age of 45 who worked more than 48 hours per week had 

twice the risk of dying from coronary heart disease. 

• Many software developers are required to work extra hours on 

projects for no extra pay.  

• In these cases, a decrease in productivity is more than offset by the 

fact that the work is essentially free to the employer. 

• Result from good project management include 

• Rational effort estimates. 

• Results in fewer unexpected crisis. 

• Making it clear what each team member is expected to do – 

this reduces role ambiguity. 

• Reduced role conflict, which occurs when a person is torn 

between competing responsibilities. 

• Bullying tactics are a sign of ineffective project management. 

• This, however, is the total opposite of competent project 

management, which seeks to create complex products in a rational, 

orderly, and careful manner. 

12.9 STRESS MANAGEMENT 

• Stress is a normal part of almost everyone's life, and it is generally 

agreed that a certain amount of stress can be beneficial by making a 

person more focused and productive. 



 

 
259 

 

Managing People in 

Software Environment 

• Low stress is typically associated with boredom, which leads to a 

decrease in performance.  

• When stress becomes too much, performance suffers as a result of 

cognitive, emotional, and physical strains.  

• When an individual's stress level exceeds a certain threshold, 

appropriate stress management techniques should be used. 

• Worrying, forgetting, and lack of concentration are all symptoms of 

cognitive strain.  

• Anxiety, restlessness, panic, interpersonal problems, losing touch 

with friends, irritability, and anger can all result from emotional 

strains.  

• Physical strains may emerge as shallow breathing, nausea, fatigue, 

headache, shoulder and back pain, sleep disturbances, and 

hypertension. 

12.9.1 CATEGORIES OF STRESS MANAGEMENT 

• There are three important categories of stress management 

techniques. 

• Imagery, relaxation, and meditation - Deep breathing, 

relaxation, physical exercise, guided imagery, yoga, 

progressive muscle relaxation, and massage therapy are all 

used in these techniques. Rolling the head from side to side is 

an example of a simple relaxation technique. Guided imagery 

encompasses a wide range of techniques, including simple 

visualisation. To instil a positive feeling, use metaphor and 

story-telling. 

• Cognitive behavioural approaches - These techniques entail 

the development of emotion-focused cognitive coping skills 

such as stress concentration self-monitoring, thought record-

keeping and rewriting, time management, assertiveness 

training, and increased social interactions. 

• Systemic approach - Systemic approaches concentrate on 

modifying the factors that contribute to stress. For example, if 

a team member finds it stressful to work with certain tools and 

techniques, a job role change may be suggested so that the 

team member does not have to deal with the stressful tools and 

techniques. 

12.10 HEALTH AND SAFETY 

• Health and safety refer to programmes, policies, and procedures that 

protect the safety, welfare, and health of anyone who works or is 

employed.  



   

 
260 

Software Project  
Management 

260 

• The overall goal of any health and safety programme is to create the 

safest working environment possible and to reduce the risk of 

workplace accidents, injuries, and fatalities. 

• The primary goal of workplace safety and health programmes is to 

prevent workplace injuries, illnesses, and deaths, as well as the pain 

and financial hardship that these events can cause for workers, their 

families, and employers. 

• Every organisation, no matter what they do, is responsible for 

maintaining workplace health and safety standards.  

• If a company does not follow these guidelines, they may be held 

liable for any damages or accidents that occur.  

• Not only would the company have a legal and financial obligation to 

comply with health and safety standards, but it also has a moral 

obligation to care for the well-being of its employees. 

• The project manager should treat safety objective as any other 

objective. 

• Safety management should be part of project management. 

• Certain issues to be considered in implementing safety at all levels 

are as follows 

• Top management must be dedicated to the safety policy. 

• Delegation of safety responsibilities should be clear. Job 

descriptions should include definitions of safety-related duties. 

• Those to whom responsibilities are delegated must understand 

and accept those responsibilities. 

• Deployment of a safety officer and assistance from experts in 

specific technical areas. 

• Safety consultation. 

• A sufficient budget for safety costs. 

• Employees must be made aware of safety procedures, and 

appropriate raining must be provided where necessary. 

12.11 SOME ETHICAL AND PROFESSIONAL 

CONCERNS 

• There is now a legal requirement to take action to reduce workplace 

threats to employees' health and safety.  

• Even if such a law did not exist, there would be few who would not 

at least acknowledge the moral obligation to protect those at work 

from foreseeable harm.  



 

 
261 

 

Managing People in 

Software Environment 

• This would be an ethical decision. 

• There are three groups of ethical responsibilities: 

• Everyone has responsibilities. 

• People in organisations have responsibilities. 

• Responsibilities associated with your profession 

• Another reason for commercial organisations reduced or at least 

unusual ethical responsibilities is that they compete with other 

businesses.  

• If a company wins some aspect of this game the competitors must 

lose investors may lose money, and employees may lose their jobs. 

• However, it is argued that this is how the market works, and as a 

result, consumers benefit from lower prices.  

• However, in the long run, competition that destroys competitors 

leads to monopoly dominance and higher prices. 

• Most organisations, on the other hand, will recognise that they do 

have ethical responsibilities.  

• This could be motivated solely by self-interest.  

• As a potential customer, you may be wary of entrusting your 

business to organisations that are clearly motivated solely by greed.  

• Organizations frequently express their goals and aspirations, perhaps 

in the form of a mission statement, and these often include goals 

related to the general public good, such as concern for the 

environment. 

• Professionals have technical knowledge that the general public does 

not have.  

• The expert's ethical duty to warn laypeople of the risks involved in a 

particular course of action.  

• Many professions or would-be professions, have member codes of 

conduct presented in 

• http://www.bcs.org/upload/pdf/cop.pdf 

• http://www.ieee.org/web/aboutus/ethics 

• http://www.apm.org/about/se_code 

 

 

http://www.bcs.org/upload/pdf/cop.pdf
http://www.ieee.org/web/aboutus/ethics
http://www.apm.org/about/se_code


   

 
262 

Software Project  
Management 

262 

12.12 SUMMARY 

• People are influenced by profit, but they are also motivated by other 

factors.  

• Both personnel selection and identifying training needs should be 

done in a systematic, structured manner, with requirements clearly 

defined first.  

• A well-thought-out job design can boost employee motivation.  

• Overburdening employees may yield short-term benefits, but it is 

detrimental to both productivity and personal health in the long run.  

• Objectives of the project should include, as appropriate, health and 

safety objectives. 

12.13 LIST OF REFERENCES 

•  “Software Project Management”, Sixth Edition, Bob Hughes, Mike 

Cotterell, Rajib Mall, Mc Graw Hill Education. 

• https://www.iedunote.com/organizational-behavior 

• https://www.tutorialspoint.com/organizational_behavior/organizatio

nal_behavior_motivation.htm 

• https://www.techwell.com/techwell-insights/2018/05/stress-and-

project-management-5-ways-relieve-project-pressure 

• https://pmtips.net/article/project-managers-care-health-safety 

12.14 UNIT END EXERCISES 

1. Explore the possible disadvantages of job enlargement for 

employers and staff. 

2. What is motivation under the Taylor’s model? 

3. Explain how new staff can be selected and inducted into a project. 

4. Explain the methods to increase staff motivation. 

5. Give a brief note on health and safety issues. 

 



   
263 

13 
WORKING IN TEAMS 

Unit Structure 

13.0 Objectives 

13.1 Introduction 

13.2 An Overview 

 13.2.1 Becoming a Team  

 13.2.2 Decision Making  

 13.2.3 Organization and Team Structures  

 13.2.4 Coordination Dependencies  

 13.2.5  Dispersed and Virtual Teams  

 13.2.6 Communication Genres  

 13.2.7 Communication Plans  

 13.2.8 Leadership 

13.3 Summary 

13.4 Exercise 

13.5 List of Books and References 

13.0 OBJECTIVES 

After going through this chapter, you will be able to know: 

• Introduction of Working in Teams Becoming a Team how to build 

effective software development team and types of teams, Decision 

Making What Is Agile Decision-Making in Project Management? 

Organization and Team Structures What Is an Organizational 

Structure? And types of organizational structure 

• Coordination, what is coordination in a team? And types, 

Dependencies and types of dependencies Dispersed and Virtual 

Team Types of Virtual Teams and its Advantages and 

Disadvantages 

• Communication Genres, Communication Plans What is a 

communication plan? The benefits of a communication plan, How to 

make a project management communication plan? 

• Leadership and different leadership styles 



   

 
264 

Software Project  
Management 

264 

13.1 INTRODUCTION 

A team is a group of people who work together toward a common goal. 

Teams have defined membership (which can be either large or small) and 

a set of activities to take part in. People on a team collaborate on sets of 

related tasks that are required to achieve an objective. Each member is 

responsible for contributing to the team, but the group as a whole is 

responsible for the team’s success. 

Project teams do the work of the project. Team building is well-known, 

focuses on team attitudes and teamwork. Transferring the learning from 

team building and teamwork to working as a team is tough. Little thought 

or effort is given to the work of the team. Become a more effective project 

manager. Understand project team development, teamwork, and the work 

of the project team. Know that project work and project management work 

is not teamwork, nor the work of the team, nor the development of the 

team. Be a better project leader by understanding teams and ensuring the 

team works. 

13.2.1 Becoming a Team  

Five Steps to Building an Effective Software Development Team 

When kicking off a new software development project, naturally we all 

intend for it to be a success. But to be one you must rely on a strong core 

— your software development team. While it is an undeniable truth that 

all teams are different in terms of their work style and the unique 

ecosystem within, there are some common elements to it. We all expect 

our team to consist of highly experienced and skilled individuals. But is it 

the only prerequisite? And, in general,  how to build an effective software 

development team? To make a group of professions a truly effective 

software development team you need to remember about some elements to 

consider: 

1. Define the kind of development team type that fits for your 

project 

First things first, before we dive deeper into what pay attention to 

when building a development team, you need to decide on the kind 

of team you want to create. Establishing a clear software 

development team structure is an important first step into an overall 

success of your project.   

Here you must choose from the three main types: 

• Generalists 

 They are Jack of all trades, so to say. Generalists possess a 

broad range of knowledge and expertise. Generally, these 

types of teams are designed to handle end-to-end solutions. 

The advantage of generalists is in the fact that they can 

provide a complete solution to the problem. However, they 



 

 
265 

 

Working in Teams 

 

also have some drawbacks — if your project requires a higher 

level of expertise in some area, generalists will find 

themselves at a loss as they may lack the knowledge and skills. 

• Specialists 

Unlike generalists, this type of teams consists of members that 

are highly skilled in a particular field. The advantage of 

specialists is clear — they can address a specific matter with 

all their knowledge and expertise, resulting in more efficient 

and effective work. On the other hand, communication is not 

exactly a forte of this type of software development team. 

Often being a very narrow specialist, team members may lack 

general understanding of what are the roles of other team 

members, and thus making communication between them 

somewhat ineffective. 

• Hybrid team 

As you’ve probably guessed, this type of team is a mix of the 

previous two. It seems like this approach combines the best 

from the two worlds, where specialists focus on functional 

parts, and generalists are responsible for the communication 

and cooperation inside the team. This dream of a team, 

however, comes with a constraint — usually this type of 

software development team is more difficult to gather in terms 

of time and financial resources. 

So, which one is it? Well, that’s for you to decide. Ideally, 

strive for the balance of generalists and specialists within your 

team to achieve better results. 

2. Decide on the software development team size 

 Now that you’ve established what kind of team you want to build, 

let’s talk about the size. There really isn’t a magical number when it 

comes to the size of your software development team. Smaller teams 

are easier to manage on the one hand, but in this case, every team 

member plays a crucial role in the project and losing even one 

person can have a significant impact on the overall result. With 

bigger teams the challenge is in managing the communication. 

 But when it comes to assembling the team, it all boils down to the 

following key factors: 

• Complexity of your project  

• Budget  

• Deadline  

• Available resources  



   

 
266 

Software Project  
Management 

266 

Based on these important elements you can decide what kind of 

team size is your solution. According to Scrum methodology, the 

optimal team size is between 3 and 9 members with 7 being the most 

perfect fit. But that doesn’t mean that you must strictly follow this 

rule. If your software project requires a bigger team, it doesn’t mean 

you are bound to have problems in managing it or establishing the 

communication. The key here is to carefully manage your team in 

accordance to your project requirements. 

3. Establish clear roles and goals 

Now this one seems like an obvious one — the roles inside your 

team are clear. There are designers, developers, and probably a 

tester, right? Yes but no. The roles of an effective software 

development team are more versatile and complex than that. 

The general development team structure looks and includes the 

following roles: 

Now let’s look more closely into each of software development team 

roles: 

Figure 13.1 General development team structure 

Product owner, in the case of an outsourced project, this is the 

client with a vision of how the end-product should look, who are the 

end-users and what it should do.  

Project manager is a person responsible for managing and leading 

the whole team. Their role is to efficiently optimize the work of the 

team, ensure the product is meeting the requirements and identify 

the goals for the team.  

Software architect is a highly skilled software developer that has 

to think through all the aspects of the project and is responsible for 

making high level design choices, as well as select technical 

standards (for instance, determines the technology stack to use). 

Business 

Analyst 

Quality 

Assurance 

Designers Developer

s 

Software 

Architect 

Product 

Owner 

Project 

Manager 



 

 
267 

 

Working in Teams 

 

Developers or product engineers are team members that apply their 

knowledge of engineering and programming languages in software 

development.  

Experience designers ensure that the product is easy and pleasant to 

use. They conduct user interviews, market research, and design a 

product with end-users in mind.   

QA or tester is responsible for the Quality Assurance and makes 

sure the product is ready to use.  

Business Analyst’s role is to uncover the ways to improve the 

product. They interact with stakeholders to understand their 

problems and needs, and later document and analyze them to find a 

solution.  

4. Build an agile software development team 

Agile methodology makes your team more flexible; it allows to 

adapt and respond to some unforeseen changes that might come 

without damaging the whole process.  

There’s no single right formula how to build your agile software 

development team. Even within this approach to software 

development there are two types of methodology: some 

prefer Scrum, while others use Kanban. 

The later practices real-time communication and full work 

transparency. It relies greatly on visualization. It’s in the core of this 

framework. Work is constantly visually represented 

on Kanban board to help the team understand at what stage they 

currently are. On top of that, by using visualization, they can work 

out what are they stumbling blocks, what slows them down and find 

ways to overcome them. 

Scrum is the most popular Agile framework that breaks down a large 

project into smaller chunks (sprints) and reviews and adapts them 

along the way. Sprints can last from a week to a month in duration. 

If you are adopting Scrum methodology, the structure of your 

software development team will include a very important element — 

Scrum master. He or she makes sure that the team sticks to the agile 

values and principles and follows the process that the team has 

agreed on.  

Regardless of the framework you choose, agile will help your team 

to deliver faster and efficiently. 

5. Make communication a priority 

And the last but definitely not least — communication. This is the 

last piece of the puzzle that very often is either the reason of success 

or failure software development team. You can have all the other 

elements right on track and properly functioning but if your team 

https://pixetic.com/team/


   

 
268 

Software Project  
Management 

268 

lacks this last element, it can sufficiently harm your product and the 

whole process.   

As hard as your team is at work daily, they spend a sufficient 

amount of time interacting with each other. And if your team 

members can clearly communicate their needs and project demands 

to one another, it can boost their collaboration and improve the work 

process overall. It is also capable of driving creativity and 

innovation inside the team. It comes in handy when discussing the 

project’s details and requirements with stakeholders, negotiating 

timelines and generally, when trying to understand what is it that the 

stakeholders want.  

Great communication skills are an important soft skill for any 

software engineer. But you should treat their ability to communicate 

as a given. Your task is to nurture and encourage the communication 

inside your software development team and make it a part of your 

normal process by practicing daily standups, design, and code 

reviews, writing documentation, presentations and also some social 

events. 

13.2.2 Decision Making  

What Is Agile Decision-Making in Project Management? 

Information is available faster and from more sources than ever before, 

which makes decision-making seem easier. 

But if you combine this information onslaught with traditional types of 

business decision-making, it will make your process slower and more 

frustrating. A new means of gathering input and data calls for a new way 

of making decisions: agile decision-making. 

Making decisions in an agile way means working iteratively, 

collaboratively, and with transparency. Pretty different from the older 

trend of having a task force craft a solution, the project manager presents 

it, and executives come to a consensus, right? In agile project teams, 

managers, leaders, and executives need to release the reins and empower 

project teams to make decisions. 

What is agile decision-making? 

As stated above, agile decision-making is a process that is collaborative, 

iterative, and transparent. It means all stakeholders are updated on 

assigned tasks at regular intervals, they give feedback, and then the team 

knows what needs to be changed or improved. The team discusses issues 

together and comes up with a solution together. 

Agile decision-making doesn’t mean rushed, on-the-fly changes at the 

whim of one project stakeholder. It also doesn’t mean that the project 

team makes all the decisions amongst themselves and then hands over a 

final product at the end. 



 

 
269 

 

Working in Teams 

 

Why you should adopt agile decision-making 

Maintaining a course of action because that’s what has been successful for 

you in the past is no longer enough to be competitive. It can even lead to 

your downfall. 

For example, Kodak infamously played it safe, underestimated the pace of 

change, and paid the price. Of course, their bankruptcy was rooted in 

compounding issues, but their late adoption of digital transformation and 

lack of taking chances on new products were driving forces. They took the 

mindset that you don’t fix what isn’t broken and were left behind by 

competitors that were willing to try new things and new ways to operate. 

But don’t equate agile project management with being as fast as possible 

and blowing up a budget with overtime to complete endless requirements. 

Working in an agile method means making iterative progress and changes 

as an empowered and self-organizing team. 

Empower the project team to deliver what the customer wants (or senior 

leadership) in the manner they decide is the most efficient and successful. 

They won’t go down some rabbit hole, wasting hours or days, because an 

agile team checks in with the customer on a regular basis. 

Five tips for agile decision-making 

Iterative delivery and feedback are a key component in agile projects. 

Though this approach makes sense to businesses—adjust and make 

changes when needed, easy enough right?—it’s the most difficult aspect 

of the agile method for people to get comfortable with. Here are a few tips 

to help you and your team be successful in agile decision-making during a 

project. 

1. Gather iterative feedback 

 When you’re showing the work and getting feedback regularly, it 

reduces the chance of a major disruption that requires a 

complex decision-making technique with a formal committee. The 

team can make incremental pivots and adjustments as needed, 

without formal oversight or stress about deviating from a lengthy 

process document. 

2. Balance alignment and autonomy 

 Your agile team needs to be empowered and well-informed when 

making decisions. But this doesn’t mean it can deviate from what 

the goals of the project are. Leaders often don’t give teams the 

autonomy needed because they fear the team going rogue and 

producing something completely off the wall. 

 An agile team will be showing their progress on a regular basis and 

getting feedback for changes. So, for example, if a construction 

company tasks a team to build a new website, an agile team won’t 

decide one sprint that the website would be better if you could book 



   

 
270 

Software Project  
Management 

270 

travel arrangements on it instead and then proudly hand over a new 

“cheap flights” site to the construction manager. 

3.  Get comfortable with good enough 

 One huge mindset change that is needed is getting comfortable with 

“good enough.” The requirements are documented “good enough.” 

The timing to start is “good enough.” 

 Then, you can work toward “great” during the execution process. 

Yes, there will be work scrapped while sharpening what “great” 

looks like and that’s OK. When the whole team is accountable for 

the project’s success, it won’t be such an emotional hit if some of 

one person’s work must be cut because of time. The team will 

support its members. 

4.  Place time limits on decisions 

 As project managers, we love timelines and due dates. And agile 

decision-making needs timelines. Set deadlines for when analysis 

must be cut off—is good enough. This helps alleviate analysis 

paralysis because you’re forced to move forward with a decision 

when it’s good enough rather than when it’s perfect. 

5.  Don’t get sloppy 

 Plan project meetings at a regular cadence to give updates, 

brainstorm for improvements, plan the next block of tasks for a 

sprint, and get iterative feedback on what’s been delivered. This 

cadence is what builds trust with senior leadership, improves the 

strength of the team, and builds the team’s confidence in their 

decision-making skills. 

13.2.3 Organization and Team Structures  

What Is an Organizational Structure? 

An organizational structure is a system that outlines how certain activities 

are directed to achieve the goals of an organization. These activities can 

include rules, roles, and responsibilities. 

The organizational structure also determines how information flows 

between levels within the company. For example, in a centralized 

structure, decisions flow from the top down, while in a decentralized 

structure, decision-making power is distributed among various levels of 

the organization. 

Having an organizational structure in place allows companies to remain 

efficient and focused. 

Understanding an Organizational Structure 

Businesses of all shapes and sizes use organizational structures heavily. 

They define a specific hierarchy within an organization. A successful 



 

 
271 

 

Working in Teams 

 

organizational structure defines each employee's job and how it fits within 

the overall system. Put simply, the organizational structure lays out who 

does what so the company can meet its objectives. 

This structuring provides a company with a visual representation of how it 

is shaped and how it can best move forward in achieving its goals. 

Organizational structures are normally illustrated in some sort of chart or 

diagram like a pyramid, where the most powerful members of the 

organization sit at the top, while those with the least amount of power are 

at the bottom. 

Not having a formal structure in place may prove difficult for certain 

organizations. For instance, employees may have difficulty knowing to 

whom they should report. That can lead to uncertainty as to who is 

responsible for what in the organization. 

Having a structure in place can help with efficiency and provide clarity for 

everyone at every level. That also means each and every department can 

be more productive, as they are likely to be more focused on energy and 

time. 

Centralized vs. Decentralized Organizational Structures 

An organizational structure is either centralized or decentralized. 

Traditionally, organizations have been structured with centralized 

leadership and a defined chain of command. The military is an 

organization famous for its highly centralized structure, with a long and 

specific hierarchy of superiors and subordinates. In a centralized 

organizational system, there are very clear responsibilities for each role, 

with subordinate roles defaulting to the guidance of their superiors. 

There has been a rise in decentralized organizations, as is the case with 

many technology start-ups. This allows companies to remain fast, agile, 

and adaptable, with almost every employee receiving a high level of 

personal agency. For example, Johnson & Johnson is a company that's 

known for its decentralized structure. As a large company with over 200 

business units and brands that function in sometimes very different 

industries, each operates autonomously. Even in decentralized companies, 

there are still usually built-in hierarchies (such as the chief operating 

officer operating at a higher level than an entry-level associate). However, 

teams are empowered to make their own decisions and come to the best 

conclusion without necessarily getting "approval" from up top. 

Types of Organizational Structures 

Functional Structure 

Four types of common organizational structures are implemented in the 

real world. The first and most common is a functional structure. This is 

also referred to as a bureaucratic organizational structure and breaks up a 

company based on the specialization of its workforce. Most small-to-

medium-sized businesses implement a functional structure. Dividing the 



   

 
272 

Software Project  
Management 

272 

firm into departments consisting of marketing, sales, and operations is the 

act of using a bureaucratic organizational structure. 

Divisional or Multidivisional Structure 

The second type is common among large companies with many business 

units. Called the divisional or multidivisional structure, a company that 

uses this method structures its leadership team based on the products, 

projects, or subsidiaries they operate. A good example of this structure is 

Johnson & Johnson. With thousands of products and lines of business, the 

company structures itself, so each business unit operates as its own 

company with its own president. 

Flatarchy Structure 

Flatarchy, a newer structure, is the third type and is used among many 

startups. As the name alludes, it flattens the hierarchy and chain of 

command and gives its employees a lot of autonomy. Companies that use 

this type of structure have a high speed of implementation. 

Matrix Structure 

The fourth and final organizational structure is a matrix structure. It is also 

the most confusing and the least used. This structure matrixes employees 

across different superiors, divisions, or departments. An employee 

working for a matrixed company, for example, may have duties in both 

sales and customer service. 

Benefits of Organizational Structures 

Putting an organizational structure in place can be very beneficial to a 

company. The structure not only defines a company's hierarchy but also 

allows the firm to layout the pay structure for its employees. By putting 

the organizational structure in place, the firm can decide salary grades and 

ranges for each position. 

The structure also makes operations more efficient and much more 

effective. By separating employees and functions into different 

departments, the company can perform different operations at once 

seamlessly. 

In addition, a very clear organizational structure informs employees how 

best to get their jobs done. For example, in a hierarchical organization, 

employees will have to work harder at buying favor or courting those with 

decision-making power. In a decentralized organization, employees must 

take on more initiative and bring creative problem solving to the table. 

This can also help set expectations for how employees can track their own 

growth within a company and emphasize a certain set of skills—as well as 

for potential employees to gauge if such a company would be a good fit 

with their own interests and work styles. 



 

 
273 

 

Working in Teams 

 

Software Project Team Organization 

There are many ways to organize the project team. Some important ways 

are as follows : 

• Hierarchical team organization 

• Chief-programmer team organization 

• Matrix team, organization 

• Egoless team organization 

• Democratic team organization 

Hierarchical team organization 

In this, the people of organization at different levels following a tree 

structure. People at bottom level generally possess most detailed 

knowledge about the system. People at higher levels have broader 

appreciation of the whole project. 

Figure 13.2 Hierarchical team organization  

 

Benefits of hierarchical team organization : 

It limits the number of communication paths and stills allows for the 

needed communication. 

It can be expanded over multiple levels. 

It is well suited for the development of the hierarchical software 

products. 

Large software projects may have several levels. 

Team 

Leader 

Senior 

Programmer 

Junior 

Programmer

s 



   

 
274 

Software Project  
Management 

274 

Limitations of hierarchical team organization : 

As information has to be travel up the levels, it may get distorted. 

Levels in the hierarchy often judges people socially and financially. 

Most technical competent programmers tend to be promoted to the 

management positions which may result in loss of good programmer and 

also bad manager. 

Chief-programmer team organization : 

This team organization is composed of a small team consisting of the 

following team members : 

The Chief programmer : It is the person who is actively involved in the 

planning, specification, and design process and ideally in the 

implementation process as well. 

The project assistant : It is the closest technical co-worker of the chief 

programmer. 

The project secretary : It relieves the chief programmer and all other 

programmers of administration tools. 

Specialists : These people select the implementation language, 

implement individual system components, and employ software tools 

and carry out tasks. 

  

Figure 13.3 Chief-programmer team organization 

 

 

Project 

secretary 

Specialist’s pool 
Project administrator 
Tester 
Programmer etc. 
 

 

 

Chief 

programmer 

Backup 

programmer 



 

 
275 

 

Working in Teams 

 

Advantages of Chief-programmer team organization :  

Centralized decision-making 

Reduced communication paths 

Small teams are more productive than large teams 

The chief programmer is directly involved in system development and 

can exercise the better control function. 

Disadvantages of Chief-programmer team organization :  

Project survival depends on one person only. 

Can cause the psychological problems as the “chief programmer” is like 

the “king” who takes all the credit and other members are resentful. 

Team organization is limited to only small team and small team cannot 

handle every project. 

Effectiveness of team is very sensitive to Chief programmer’s technical 

and managerial activities. 

Matrix Team Organization : 

In matrix team organization, people are divided into specialist groups. 

Each group has a manager. Example of Metric team organization is as 

follows : 

Egoless Team Organization : 

Egoless programming is a state of mind in which programmer are 

supposed to separate themselves from their product. In this team 

organization goals are set, and decisions are made by group consensus. 

Here group, ‘leadership’ rotates based on tasks to be performed and 

differing abilities of members. 

In this organization work products are discussed openly, and all freely 

examined all team members. There is a major risk which such 

organization if teams are composed of inexperienced or incompetent 

members. 

Democratic Team Organization : 

It is quite like the egoless team organization, but one member is the team 

leader with some responsibilities : 

Coordination 

Final decisions when consensus cannot be reached. 

Advantages of Democratic Team Organization :  

Each member can contribute to decisions. 



   

 
276 

Software Project  
Management 

276 

Members can learn from each other. 

Improved job satisfaction. 

Disadvantages of Democratic Team Organization : 

Communication overhead increased. 

Need for compatibility of members. 

Less individual responsibility and authority. 

Software development team structure 

1. Project Manager 

 The project manager plays the main role in managing, planning, 

implementing, controlling, and closing the project. The project 

manager guides the team through different phases of the project and 

is also responsible for ensuring that it runs on budget, on time and 

within scope. 

2. Architect 

 The architect, or software architect, oversees designing and 

developing the software product. This individual determines the 

technical standard and design, as well as other high-level decisions 

related to the project. The architect takes care of the systems, 

solutions, database, security, and integrations involved in the 

product development. 

3. Designer 

 This can be a UI or UX designer, and their role is to ensure overall 

user satisfaction of the product. The designer creates user-friendly 

interfaces for the software application and takes care of the 

branding, usability, design and function of the product. 

4. Developer/s 

 The type and number of developers in a team depends largely on the 

type of project. However, most projects require an API, mobile, 

backend and frontend developer. The developer will identify, design, 

install and test the software product according to the final design. 

5. Quality Assurance (QA) Engineer 

 You can either have a manual QA Engineer or engage an automated 

performance test after creating the software product. Either way, the 

QA Engineer oversees checking the quality of the product and 

giving helpful feedback. 

 

 



 

 
277 

 

Working in Teams 

 

Tips to Set up Your Software Development Teams Structure 

Before setting up your software development teams structure, it’s always 

important to troubleshoot your current team structure. If you don’t know 

the problem with your current team structure, you won’t know how to 

improve it or rearrange it so it can be effective.  

When businesses set up their development team, they usually make 

common mistakes that end up reducing its effectiveness. For example, 

when setting up a development team for a project with a new strategy or 

purpose, many businesses end up trying to work with their old structure 

even if it does not suit or serve the new purpose. 

Another common mistake businesses make is employing individuals in 

multiple roles without understanding the responsibilities for each unique 

role.  

Based on these problems, here are some tips to ensure an effective 

development team structure:  

• Ensure the structure is relevant to the project 

 Consider the time, complexity and budget of your project before 

giving attention to setting up a team. As mentioned earlier, a team 

structure for a previous development project may not work 

effectively for a brand-new project with different goals. The 

structure should perfectly fit the new project’s aim.  

• Define and establish the size of the team  

 The first step in setting up a development team is to define and 

establish the size of the group. First, identify exactly what needs to 

be done to complete the project; you will then have a better idea of 

the size of the team you require. 

• Establish leadership and define clear roles  

 One of the main elements in a team is its leadership. It is vital to 

establish the leadership, as well as other individual roles in the first 

stage of structuring the team. This will avoid confusion and 

miscommunication during the working stages. 

• Match responsibilities to individuals 

 Once roles are defined, everyone’s tasks and responsibilities should 

be established. Having individual responsibilities will help the team 

to stay focused and aid in building a solid structure. 

• Put workflow processes in place 

 Teams cannot operate optimally if they are not completely sure 

about processes. Put road maps, communication funnels and smaller 

targets in place to ensure smooth workflows. 



   

 
278 

Software Project  
Management 

278 

• Avoid a large and complex team 

 Large teams can quickly become difficult to manage and roles and 

responsibilities can easily become blurry. Smaller software 

development teams are easier to coordinate and allow you to identify 

good or bad efforts more efficiently. For large-scale projects, you 

can divide your team into sub-teams and place team leaders on each 

one. 

• Use project management software 

 These days, software can save you a lot of time and effort and take 

some strain off your development team. When using project 

management software, time consuming tasks can be automated, and 

your team can better keep track of their individual responsibilities. 

You can also include communication apps for better interaction. 

This is specifically effective when working with remote teams.  

• Have a good reporting structure 

 Quality reporting is at the core of any project’s final success. 

Reporting reflects how effective your team works together and helps 

you to keep track of the progress of your project. Reporting can be 

done by individual members or by the project members on a daily, 

weekly, or monthly basis.  

 Once you understand how to troubleshoot your current team and 

have a better idea of how to set up a new structure, you are ready to 

put your team together. To ensure you have access to the best talent, 

it is advisable to make use of staff augmentation services. 

Mobilunity is an experienced vendor who can assist with team 

augmentation. 

13.2.4 Coordination Dependencies  

What is coordination in a team? 

Image result for Coordination among team in software project 

management 

Team coordination refers to the processes and strategies organizations use 

to help their teams collaborate more effectively on their individual and 

collective goals. ... Getting a team (or multiple teams) of people with 

unique feelings, ideas, and ways of doing things to work together 

seamlessly is not a small task 

There are two types of team coordination: explicit and implicit. 

 

Many of the strategies that leaders implement to drive effective team 

coordination fall into the “explicit coordination” bucket. These include 

things like building effective work processes, delegation, planning, and 

direct communication. You can think of these as things leaders actively do 

to organize their company. 



 

 
279 

 

Working in Teams 

 

However, while explicit coordination has been studied for 

decades, research has only recently started to explore “implicit 

coordination.” 

 

Implicit coordination refers to the ways teams adapt to the needs of their 

organization and other departments proactively on their own, apart from 

direction from superiors or others. An example of it could be your sales 

team sending customer feedback proactively to your product team without 

being asked. 

 

Needless to say, implicit coordination is kind of the holy grail for leaders 

who are trying to get their teams to work together seamlessly. If you can 

get your teams to anticipate the needs of other teams with little input or 

motivation from you, it makes everything easier. 

A dependency describes the relationship among activities and specifies the 

order in which they need to be performed. Dependencies arise in every 

decision making, planning, and developing process and are ideally 

predetermined. Tasks can be successors and predecessors to other tasks 

whereby the instant of each execution may be aligned accordingly. 

 

There are 4 types of dependencies in project management viz. 

Mandatory, Discretionary, External, & Internal 

Mandatory Dependency 

Mandatory Dependencies are either required by the law or contract and 

sometimes they are inherent in the nature of the work. Due to these, the 

work must be done in a certain order. They are also called Hard Logic. 

As an example, consider 2 activities A and B. If B has a Mandatory 

Dependency on A then it means action on B cannot be performed until 

Action on A has been completed. Let us look at following examples to 

understand: 

A: Requirements Documentation; B: Client Approval – Client cannot 

approve requirements until documentation is complete 

A: Lay Building Foundation; B: Construct a Floor – A floor of a building 

cannot be constructed until foundation is laid. 

A: Build Car Prototype; B: Perform Crash Testing – Crash testing on a 

care prototype cannot be performed unless the prototype itself is available. 

Discretionary Dependency 

Discretionary Dependencies are defined by the Project Team as a certain 

order of activities is more suitable for the nature of work. These are also 

called Preferred Logic, Preferential Logic, or Soft Logic. 

Sometimes, there is more than one way to define a sequence between 2 

activities, but the Project Team decides to take one sequence over the 



   

 
280 

Software Project  
Management 

280 

other. They choose a particular sequence because of the best practices or 

lessons learned from prior experiences. 

As an example, consider 2 activities A and B. A and B can be 

independently performed, or one can be performed after the other. The 

Project Team can choose to make B dependent on A. Let us look at 

following examples to understand: 

A:-Develop System Module X; B: Develop System Module Y – The 

project team can develop either X first or Y first, but they decide to 

develop X first. 

A: Furnish Room R; B: Furnish Room S – The project team can furnish 

either room R first or S first, but they decide to furnish S first. 

A: Book Airline Ticket; B: Buy Travel Insurance – The project team can 

book an airline ticket before buying travel insurance or do it other way 

around. 

External Dependency 

External Dependencies are defined between project activities and non-

project activities. The project activities are done by the Project Team. The 

non-project activities are done by people who are external to the Project 

Team e.g., representatives from Client’s organization, Vendors’ 

organization, or any other external groups within the same organization. 

Generally, the Project Team has no control over non-project activities and 

hence the project schedule can be disrupted because of nonperformance of 

non-project activities. 

As an example, consider 2 activities A and B. If B has an External 

Dependency on A then it would signify that B is a project activity while A 

is a non-project activity. Following examples will be helpful in 

understanding: 

A: Client Go-Ahead; D: Initiate Project: A project cannot be initiated 

before the client gives a go-ahead. 

A: Delivery of Equipment; D: Start Development: Project development 

cannot start until equipment is delivered. 

A: Approval of Building Plans; D: Start Construction: Construction of a 

building cannot be started unless the building plans are approved. 

Internal Dependency 

Internal Dependencies are defined between two project activities. 

Generally, the Project Team has complete control over the project 

activities. 

As an example, consider 2 activities A and B. If B has an Internal 

Dependency on A, then it would signify that both A and B are project 

activities. These are performed by the Project Team members. There is no 



 

 
281 

 

Working in Teams 

 

involvement of any external party. Let us look at following examples to 

understand: 

A: Develop System; B: Test System 

A: Construct Wall; B: Paint Wall 

A: Assemble Machine; B: Pack Machine 

Mandatory vs Discretionary and External vs Internal Dependencies 

There are a total of 4 Types of Project Dependencies. However, only 2 are 

applicable at the same time. A dependency between 2 activities could be 

any one of the following: 

Mandatory-External 

Discretionary-External 

Mandatory-Internal 

Discretionary-Internal 

Two activities cannot have Mandatory and discretionary at the same time. 

Similarly External and Internal cannot happen at the same time. 

For example, the first example from the mandatory dependencies section 

above is also an external dependency, whereas the second example is an 

internal dependency. 

13.2.5 Dispersed and Virtual Teams  

A virtual team (also known as a geographically dispersed team, 

distributed team, or remote team) usually refers to a group of 

individuals who work together from different geographic locations and 

rely on communication technology such as email, instant messaging, and 

video or voice conferencing services to collaborate. The term can also 

refer to groups or teams that work together asynchronously or across 

organizational levels. Powell, Piccoli and Ives (2004) define virtual teams 

as "groups of geographically, organizationally and/or time dispersed 

workers brought together by information and telecommunication 

technologies to accomplish one or more organizational tasks.According to 

Ale Ebrahim et. al. (2009), virtual teams can also be defined as "small 

temporary groups of geographically, organizationally and/or time 

dispersed knowledge workers who coordinate their work predominantly 

with electronic information and communication technologies to 

accomplish one or more organization tasks. 

A virtual team is a team where the primary method of interaction is done 

through electronic mediums. When it comes to the medium, it could range 

from e-mail communications to video conferencing. 



   

 
282 

Software Project  
Management 

282 

Some virtual teams do not interact face-to-face (when team members 

reside in different demographics) and some virtual teams physically meet 

up occasionally. 

Think of an online business for web development. Someone can start such 

a business and hire developers, QA engineers, UI engineers and project 

managers from different parts of the globe. 

Since web development does not involve in physical delivery of goods and 

all the deliveries are done electronically, such a company can exist on the 

Internet. 

Team meetings can be held through conference voice calls or video calls. 

This virtual team can work towards their company goals and act as a 

single entity just by telecommuting. 

Why Virtual Teams? 

There are many reasons for having a virtual team. First, it is the 

technology. 

The Internet and related technologies helped enhancing the 

communication across the globe, where certain industries that do not 

require the person to be present in physical sense could make much use of 

it. A good example is a web development team. 

Following are some of the top reasons for having virtual teams: 

• Team members are not located in the same demography. 

• The transportation cost and time is quite an overhead. 

• Team members may work in different times. 

• The company does not require a physical office, so the logistics and 

related costs are minimum. 

• The type of work done may require high level of creativity, so the 

employees will have better creativity when they work from a place, 

they are comfortable with (home). 

Types of Virtual Teams 

There are many types of virtual teams operating at present. Following are 

a few of those teams: 

• Entire companies that operate virtually 

• Tasks teams, responsible of carrying out a specific task 

• Friendship teams such as groups in Facebook or any other social 

network 

• Command teams, such as a sales team of a company distributed 

throughout the US 

• Interest teams where the members share a common interest 

The Technology 

The technology plays a vital role for virtual teams. Without the use of 

advanced technology, virtual teams cannot be effective. 



 

 
283 

 

Working in Teams 

 

The Internet is the primary technology used by the virtual teams. The 

Internet offers many facilities for the virtual teams. Some of them are: 

• E-mail 

• VoIP (Voice Over IP) - voice conferencing 

• Video conferencing 

• Groupware software programs such as Google Docs where teams 

can work collaboratively. 

• Software for conducting demonstrations and trainings such as 

Microsoft Live Meeting and WebEx. 

When it comes to the technology, not only the software matters, but the 

virtual teams should also be equipped with necessary hardware as well. 

As an example, for a video conference, the team members should be 

equipped with a web camera and a microphone. 

Advantages and Disadvantages 

First, let's look at the advantages of operating as a virtual team. 

• Team members can work from anywhere and anytime of the day. 

They can choose the place they work based on the mood and the 

comfort. 

• You can recruit people for their skills and suitability to the job. The 

location does not matter. 

• There is no time and money wasted for commuting and clothing. 

• Physical handicaps are not an issue. 

• The company does not have to have a physical office maintained. 

This reduces a lot of costs to the company. By saving this money, 

the company can better compensate the employees. 

disadvantages of using virtual team: 

• Since team members do not frequently meet or do not meet at all, 

the teamwork spirit may not be present. 

• Some people prefer to be in a physical office when working. These 

people will be less productive in virtual environments. 

• To work for virtual teams, individuals need to have a lot of self-

discipline. If the individual is not disciplined, he or she may be less 

productive. 

13.2.6 Communication Genres  

Communications genres: 

• Communication is a critical factor in project management. There are 

instances where projects have failed because of miscommunication 

and communication gaps.  



   

 
284 

Software Project  
Management 

284 

• Project managers fill this gap by devising a good communication 

mechanism that will help him to communicate with the team 

members as well as stakeholders, sponsors, top-tier management and 

all the people who are connected to the project. 

• If an effective communication methodology is not followed by the 

project manager, it may lead to many discrepancies and ultimately 

may also lead to project failure, which is not appropriate for the 

organization.  

• It is also important that the right information is delivered to the right 

person. 

• So, project managers have the responsibility to properly channelize 

the communication process, so that the right persons receive the 

right information. 

• Another important point that project managers must make a note of 

is that the information sent must be clear, concise, and informative. 

13.2.7 Communication Plans  

What is a communication plan? 

In project management, a communication plan is an outline of how you’re 

going to communicate important, ongoing project information to key 

stakeholders. Your communication plan will help your team understand 

who should be getting which notifications and when to loop in project 

stakeholders. As part of your communication plan, you’ll clarify which 

channel stakeholders should use and when, how frequently different 

details should be communicated, and who is responsible for each of the 

different channels. 

Sharing a communication plan can give your team clarity about which 

tools to use when and who to contact with each of those tools. Without a 

communication plan, you might have one team member trying to ask 

questions about work in a tool that another team member rarely checks. 

Rather than being able to clearly communicate and move forward with 

work, each team member would end up frustrated, confused, and 

disconnected from the work that matters. Then, if they don’t have clear 

insight into who is responsible for each channel, they might end up 

reaching out to an executive stakeholder with questions that person can’t 

answer. What started out as a simple miscommunication has spiraled into 

three frustrated team members—and all the while, work isn’t moving 

forward. 

The benefits of a communication plan 

Poor communication contributes to project failure, and therefore, it could 

spell massive financial loss to the company. At the opposite end of the 

spectrum, high-performing businesses communicate more frequently and 

do so more effectively than their low-performing counterparts. 



 

 
285 

 

Working in Teams 

 

A project management communication plan will keep your project on 

track because it: 

• Creates written documentation that the team can reference 

• Sets expectations of when stakeholders will receive updates 

• Increases stakeholders’ visibility into the project and its status 

• Provides the opportunity for stakeholders to give feedback, which 

can help the team detect issues early on and decrease wasted work 

• Increases productivity during meetings or eliminates them altogether 

So, if you want your project to be completed successfully and on time, 

make sure you know how to create an effective communication plan. 

How to make a project management communication plan? 

Based on the benefits explained above, we’re sure you’re anxious to start 

your own project management communication plan. Follow these steps to 

get started. 

1.  Choose a format 

 Choose a platform where it will be easy to gather feedback on your 

communication plan and to share or store the plan for your team and 

stakeholders to reference. 

 Many project managers create their communication plan on a word 

document or a spreadsheet, starting from a project communication 

plan template, but you might also consider choosing a more visual 

option, such as a timeline or a flowchart, to clearly explain the 

frequency of communication or the best method to use based on the 

stakeholder. 

2.  Set a communication goal 

 Whatever you hope to achieve, the first step to crafting a successful 

communication plan is to write that goal down. Referring back to the 

importance of a communication plan, your goal will likely be to 

keep stakeholders updated on the project status or even to keep 

stakeholders mindful of the project’s benefits, so they’ll continue to 

advocate for it.  

3.  Identify stakeholders 

 Most projects have many stakeholders, most of whom have different 

levels of interest in and influence on the project. You’ll need to 

identify the stakeholders with whom you’ll communicate throughout 

the project and list them. 

4.  Identify methods of communication 

 Your CTO never checks his email but is on Slack all day. On the 

other hand, your head designer never installed Slack but checks her 

email constantly. And you’ll need to hire a skywriter to 

communicate with your art director. 



   

 
286 

Software Project  
Management 

286 

One purpose of your communication plan is to get the right eyes on the 

right information, so along with listing who your stakeholders are, your 

communication plan should also list how you intend on communicating 

with those stakeholders. 

Consider the following methods depending on what your stakeholders are 

most likely to see or attend: 

• Weekly check-ins 

• Meetings, whether in person, over the phone, or through video 

conferencing 

• Meeting summaries 

• Status reports 

• Formal presentations 

• Surveys 

• To-do lists 

• Project dashboards 

• Collaboration apps, such as Slack or Google Hangouts 

The communication method you choose may also depend on the 

information you need to deliver. You likely don’t need a formal in-person 

meeting every week to share updates on the project; you could send a 

weekly email with updates and hold meetings when the team reaches a 

major milestone. 

5. Determine frequency of communication 

List how often you will send out each type of communication (e.g., send a 

weekly email on Mondays with project progress, links to completed 

deliverables, current budget, etc.) or how often you need to loop in each 

stakeholder (e.g., each team member should send daily emails to update 

the project manager but only include the executive stakeholder on the 

video conference following each milestone). 

In addition to including this information on your project management 

communications plan, make sure to schedule communication frequency on 

your calendar or into your task management software. 

6. Determine who provides communication updates 

Most often, this task will fall on the project manager, but if not, the owner 

of a specific update needs to be clearly identified in your communications 

plan. 

 



 

 
287 

 

Working in Teams 

 

13.2.8 Leadership 

Leadership means directing, motivating and organizing groups of people 

for performing the set tasks. Leaders must have the quality to lead the 

groups of people. They must have the capability to inspire others and must 

make them perform the tasks timely. 

Project leadership plays a very important part in project management. 

Each leader has owned leadership style and the style differs from person to 

person, which depends upon their experiences, philosophies and their 

personalities. Leadership styles is the behavior of the leaders towards the 

team they are leading. The different kinds of leadership style will have 

different effects on the environment and the output produced by the team. 

There are different leadership styles that a project leader must have, to be 

effective in their role in leading the teams. The different kinds of 

leadership styles are: 

• The Autocratic Leadership Style: The leaders have all the authority, 

and they give instructions to the team what all tasks have to be done 

and how it is to be achieved. 

• The Democratic Leadership Style: In this style the leaders focus to 

build group consensus and commitments in the team management of 

decision-making processes. The leaders participate with the team 

and greatly motivate the team members which is very important for 

the organization in achieving their goals. 

• The Coercive Leadership Style: This style is used by the project 

leaders when they issue orders in the manner when there is only one 

direction of communication. The leaders give a direct order to to the 

team, and they have strong control over the situations. 

• The Authoritative Leadership Style: The leaders share the vision 

with the team and allows the team to give their input in the 

decisions. The leaders motivate the team members and the team’s 

contribution is given greater value. 

•  The Affiliative Leadership Style: This style is used by the leader to 

encourage every member, promote cooperation, and team harmony. 

• The Pacesetting Leadership Style: The leadership style in which 

high performance standards are set and the team members have the 

capability to achieve the goals with less supervision. 

• The Coaching Style: In this style the leaders teach and allows the 

team in identifying the strengths and weaknesses. The team is given 

full support and encouragement, and the mistakes are considered as 

learning opportunities in the development processes. 

• The Transformational Leadership Style: This kind of style is 

helpful when the organization is going through some changes and 

the team members are being replaced. At this stage the leaders can 



   

 
288 

Software Project  
Management 

288 

motivate the team by creating new styles and inspire them with 

enthusiasm and positive styles. 

• The Free-rein Leadership Style: The leaders do not direct the team 

members on how to perform a task. They only assign the tasks and 

the time period by which it has to be achieved. The team has 

complete freedom to make decision on policies and methodologies 

to be adopted for the goal achievement. 

Thus, the good leaders are those leaders who use the styles proficiently 

according to the situation. 

13.3 SUMMARY 

In this Working in Teams, you learned about what is team and how to  

Building an Effective Software Development Team?, What Is Agile 

Decision-Making in Project Management?, Organization and Team 

Structures and Types of Organizational Structures, Software Project Team 

Organization ways and software development team structure, What is 

coordination in a team ? and types of dependencies in project 

management, Dispersed and Virtual Teams and its types and advantages 

and disadvantages , definition of Communications genres , What is a 

communication plan? its benefits, How to make a project 

management communication plan?, Leadership  In Project Management and 

its styles  etc. Still, you had a doubt go through references and 

bibliography                                                                                                                                                                        

13.4 EXERCISE 

Q.1 Write Five  Steps to Building an Effective Software Development 

Team and types of teams 

Q.2 What Is Agile Decision-Making in Project Management? 

Q.3 What is agile decision-making? 

Q.4 Explain Software Project Team Organization? 

Q.5 What Is an Organizational Structure? And Types of Organizational 

Structures 

Q.6 Explain software development team structure 

Q.7 Explain coordination and dependency and types of dependency 

Q.8 Explain virtual teams 

Q.9 What are the Types of Virtual Teams 

Q.10 Explain Communications genres 

Q.11 What is a communication plan? 



 

 
289 

 

Working in Teams 

 

Q,12 Explain The benefits of a communication plan 

Q.13 How to make a project management communication plan? 

Q.14 Explain leadership and its styles 

13.5 LIST OF BOOKS AND REFERENCES 

1. Software Project Management Bob Hughes, Mike Cotterell, Rajib 

Mall TMH 6 th 2018 

2. Project Management and Tools & Technologies – An overview 

Shailesh Mehta SPD 1st 2017  

3.  Software Project Management Walker Royce Pearson 2005 

4. https://perfectial.com 

5. https://www.geeksforgeeks.org 

6. https://www.softwareadvice.com 

7. https://www.investopedia.com 

8. https://www.pmbypm.com 

9. https://www.tutorialspoint.com 

10. https://en.wikipedia.org 

11. https://citizenchoice.in 

12. https://www.lucidchart.com 

13. https://asana.com/resources 

14. https://www.whizlabs.com 

 



   

 
290 

Software Project  

Management 

 

290 

14 
SOFTWARE QUALITY 

Unit Structure 

14.0 Objectives 

14.1 Introduction 

14.2 An Overview 

 14.2.1 The Place of Software Quality in Project Planning  

 14.2.2 Importance of Software Quality 

 14.2.3 Defining Software Quality 

 14.2.4 Software Quality Models 

 14.2.5 ISO 9126 

 14.2.6 Product and Process Metrics 

 14.2.7 Product versus Process Quality Management 

 14.2.8 Quality Management Systems 

 14.2.9 Process Capability Models 

 14.2.10 Techniques to Help Enhance Software Quality 

 14.2.11 Testing, Software Reliability 

 14.2.12 Quality Plans 

14.3 Summary 

14.4 Exercise 

14.5 List of Books and References 

14.0 OBJECTIVES 

After going through this chapter, you will be able to know: 

• The Place of Software Quality in Project Planning 

• Importance of Software Quality, Defining Software Quality, 

Software Quality Models, ISO 9126 

• Product and Process Metrics What is process and product metrics? 

Types of Metrics Advantages and disadvantages of Software Metrics 



 

 
291 

 

Software Quality • Product versus Process Quality Management What is product quality 

and process quality? Software quality management Quality 

Management Systems, Process Capability Models Techniques to 

Help Enhance Software Quality 

• Testing and type of testing, different techniques of Software Testing, 

Software Reliability, Quality Plans 

14.1 INTRODUCTION 

Quality software refers to a software which is reasonably bug or defect 

free, is delivered in time and within the specified budget, meets the 

requirements and/or expectations, and is maintainable. In the software 

engineering context, software quality reflects both functional quality as 

well as structural quality. 

• Software Functional Quality − It reflects how well it satisfies a 

given design, based on the functional requirements or specifications. 

• Software Structural Quality − It deals with the handling of non-

functional requirements that support the delivery of the functional 

requirements, such as robustness or maintainability, and the degree 

to which the software was produced correctly. 

• Software Quality Assurance − Software Quality Assurance (SQA) 

is a set of activities to ensure the quality in software engineering 

processes that ultimately result in quality software products. The 

activities establish and evaluate the processes that produce products. 

It involves process-focused action. 

• Software Quality Control − Software Quality Control (SQC) is a 

set of activities to ensure the quality in software products. These 

activities focus on determining the defects in the actual products 

produced. It involves product-focused action. 

14.2.1 The Place of Software Quality in Project Planning 

Software quality is a nuanced concept that requires a framework that 

addresses functional, structural and the process of the software delivery 

understand.  Measurement of each aspect is a key tool for understanding 

whether we are delivering a quality product and whether our efforts to 

improve quality are having the intended impact. However, measurement 

can be costly. To balancing the effort required to measure quality versus 

the benefit, you first need to understand the reasons for measuring quality. 

 Five of reasons quality is important to measure include: 

1. Safety – Poor quality in software can be hazardous to human life and 

safety. Quality problems can impact the functionality of the software 

products. Jon Quigley discussed the impact of configuration defects 

that effected safety in SPaMCAST 346.  



   

 
292 

Software Project  

Management 

 

292 

2. Cost – Quality issues cost money to fix.  Whether you believe that a 

defect is 100x more costly to fix late in the development cycle or 

not, doing work over because it is defective does not deliver more 

value than doing it right once. 

3. Customer Satisfaction (internal) – Poor quality leads stakeholders to 

look for someone else to do your job or perhaps shipping your job 

and all your friend’s jobs somewhere else.  Recognize that the 

stakeholders experience as the software is being developed, tested 

and implemented is just as critical as the raw number of defects.      

4. Customer Satisfaction (external) – Software products that don’t 

work, are hard to use (when they don’t need to be) or are buggy 

don’t tend not to last long in the marketplace.  Remember that in 

today’s social media driven world every complaint that gets online 

has a ripple effect.  Our goal should be to avoid problems that can be 

avoided. 

5. Future Value – Avoiding quality problems increases the amount of 

time available for the next project or the next set of features. 

 Increasing quality also improves team morale, improved team 

morale is directly correlated with increased productivity (which will 

increase customer satisfaction and reduce cost).   

14.2.2 Importance of Software Quality 

The Seven Aspects(importance) of Software Quality 

Software engineering is a complex field. Good software engineers are 

capable of balancing opposing forces and working within constraints to 

create great software. Poor software developers (they really aren’t 

engineers) are ones who are incapable of perceiving the trade-offs they are 

making and the implications of their design decisions (or lack thereof). 

Every software engineer absolutely must know the seven aspects of 

software quality: 

• Reliability 

• Understandability 

• Modifiability 

• Usability 

• Testability 

• Portability 

• Efficiency 

These seven aspects can be measured and judged for any software product. 

They apply to embedded systems, websites, mobile apps, video games, 

open-source APIs, internal services, and any other sort of software 

product. These aspects are entirely business domain independent. A 

software engineer’s ability can be measured by the quality of the software 

he creates. Skilled engineers create high-quality software and source code. 



 

 
293 

 

Software Quality For different projects, the prioritization of the aspects of quality will vary. 

Some projects should be focused on reliability, usability, and 

understandability, while other projects will place high importance on 

testability and efficiency. As a software engineer, you must know which 

aspects of quality are most important to your project. You must apply your 

best efforts towards the most critical aspects, and not spend excessive time 

on less important aspects. 

Reliability: Software is reliable if it behaves consistently. The 

functionality of a program should be predictable and repeatable. Errors 

should occur rarely or not at all. Errors that do occur should be handled 

gracefully and proactively. Users should never ask themselves whether the 

software will work correctly. 

Understandability: The structure, components, and source code must be 

understandable. They must be clear. They must be well-organized. They 

must behave the way a developer would expect. Anything in the code that 

causes developers confusion reveals that the code is lacking in 

understandability. High-quality source code always appears simple and 

obvious. 

Modifiability: It should be easy to add or change the behavior of a 

system. Flexible systems require changing very few lines of code to alter a 

behavior. For the expected dimensions of change, an application should 

have plugin points that allow the application to be used with different 

contextual elements. Tight coupling to an element that is expected to 

change is unacceptable. 

Usability: Software products must be simple and easy to use. The 

common use cases should be as obvious and clearly presented as possible. 

Software should not require excessive configuration. Users should feel 

empowered by your software. They should not need internet searches to 

discover core application functionality. 

Testability: The functionality of software must be verifiable. The process 

of testing the software must be easy. Each business use case should be 

directly testable. Clear verification metrics must be available. Highly 

testable software will ship with a comprehensive automated test suite. 

Portability: Portable software is usable in different environments and 

contexts. It is highly reusable. Portable software is decoupled from 

specific operating systems, types of hardware, and deployment contexts. 

Extremely portable software is reusable across projects and problem 

domains. 

Efficiency: Efficient software uses as few physical resources as possible. 

It is fast. It is memory efficient. It consumes few CPU cycles. It uses little 

battery life. It makes few external service calls. It minimizes the number 

of database calls. Efficient software accomplishes as much as possible 

with the least number of resources. 



   

 
294 

Software Project  

Management 

 

294 

you absolutely must know these sevens aspects of software quality. You 

must know which of the seven aspects are most important and least 

important in your current projects. Your code reviews should reference 

these aspects. Your design meetings and discussions should explicitly 

involve these aspects. You must know when you are sacrificing one of 

these dimensions to improve another dimension. You must cultivate a 

deep awareness of software quality. It should inform and guide your 

designs. 

Indeed, nearly all the software practices, patterns, and methodologies that 

have been created in recent years are attempts to increase software quality 

in one or more of these dimensions. The best practices and methodologies 

are ones that improve multiple aspects (SOLID, TDD, XP, DDD). Those 

are means to an end. You must know the goal to adequately judge their 

effectiveness. Quality software is the goal. 

14.2.3 Defining Software Quality 

What is software quality? 

The quality of software can be defined as the ability of the software to 

function as per user requirement.  When it comes to software products it 

must satisfy all the functionalities written down in the SRS document. 

Key aspects that conclude software quality include, 

• Good design – It’s always important to have a good and aesthetic 

design to please users 

• Reliability – Be it any software it should be able to perform the 

functionality impeccably without issues 

• Durability- Durability is a confusing term, In this context, durability 

means the ability of the software to work without any issue for a 

long period of time. 

• Consistency – Software should be able to perform consistently over 

platform and devices 

• Maintainability – Bugs associated with any software should be able 

to capture and fix quickly and news tasks and enhancement must be 

added without any trouble 

• Value for money – customer and companies who make this app 

should feel that the money spent on this app has not fone to waste. 

14.2.4 Software Quality Models 

Software Quality Models  

Software Quality Models are a standardized way of measuring a software 

product. 



 

 
295 

 

Software Quality Software quality is the totality of features and characteristics of a product 

or a service that bears on its ability to satisfy the given needs. Poor quality 

of the software product in sensitive systems may lead to loss of human 

life, permanent injury, mission failure, or financial loss. So, the quality of 

the project should be maintained at appropriate label. To maintain the 

quality, there are different quality models. "A high-quality product is one 

which has associated with it a number of quality factors. 

Types of Software Quality Models 

Below are few quality models from the so-called Quality Management 

Gurus. 

1. McCall’s Quality model (1977) 

 Also called as General Electric’s Model. This model was mainly 

developed for US military to bridge the gap between users and 

developers. It mainly has 3 major representations for defining and 

identifying the quality of a software product, namely 

Product Revision : This identifies quality factors that influence the 

ability to change the software product. 

(1) Maintainability : Effort required to locate and fix a fault in the 

program within its operating environment. 

(2) Flexibility : The ease of making changes required as dictated by 

business by changes in the operating environment. 

(3) Testability : The ease of testing program to ensure that it is error-

free and meets its specification, i.e, validating the software 

requirements. 

Product Transition : This identifies quality factors that influence 

the ability to adapt the software to new environments. 

(1) Portability : The effort required to transfer a program from one 

environment to another. 

(2) Re-usability : The ease of reusing software in a different context. 

(3) Interoperability: The effort required to couple the system to 

another system. 

 Product Operations : This identifies quality factors that influence 

the extent to which the software fulfills its specification. 

(1) Correctness : The extent to which a functionality matches its 

specification. 

(2) Reliability : The system’s ability not to fail/ the extent to which the 

system fails. 



   

 
296 

Software Project  

Management 

 

296 

(3) Efficiency : Further categorized into execution efficiency and 

storage efficiency and generally means the usage of system 

resources, example: processor time, memory. 

(4) Integrity : The protection of program from unauthorized access. 

(5) Usability : The ease of using software. 

2. Boehm’s Quality model (1978): 

Boehm’s model is similar to the McCall Quality Model in that it also 

presents a hierarchical quality model structured around high-level 

characteristics, intermediate level characteristics, primitive 

characteristics – each of which contributes to the overall quality 

level. 

The high-level characteristics represent basic high-level 

requirements of actual use to which evaluation of software quality 

could be put – the general utility of software. The high-level 

characteristics address three main questions that a buyer of software 

has: 

• As-is utility: How well (easily, reliably, efficiently) can I use it as-

is? 

• Maintainability: How easy is it to understand, modify and retest? 

• Portability: Can I still use it if I change my environment? 

The intermediate level characteristic represents Boehm’s 7 quality 

factors that together represent the qualities expected from a software 

system: 

• Portability (General utility characteristics): Code possesses the 

characteristic portability to the extent that it can be operated easily 

and well on computer configurations other than its current one. 

• Reliability (As-is utility characteristics): Code possesses the 

characteristic reliability to the extent that it can be expected to 

perform its intended functions satisfactorily. 

• Efficiency (As-is utility characteristics): Code possesses the 

characteristic efficiency to the extent that it fulfills its purpose 

without waste of resources. 

• Usability (As-is utility characteristics, Human Engineering): Code 

possesses the characteristic usability to the extent that it is reliable, 

efficient and human-engineered. 

• Testability (Maintainability characteristics): Code possesses the 

characteristic testability to the extent that it facilitates the 

establishment of verification criteria and supports evaluation of its 

performance. 

• Understandability (Maintainability characteristics): Code possesses 

the characteristic understandability to the extent that its purpose is 

clear to the inspector. 



 

 
297 

 

Software Quality • Flexibility (Maintainability characteristics, Modifiability): Code 

possesses the characteristic modifiability to the extent that it 

facilitates the incorporation of changes once the nature of the desired 

change has been determined. 

The lowest level structure of the characteristics hierarchy in Boehm’s 

model is the primitive characteristics metrics hierarchy. The primitive 

characteristics provide the foundation for defining qualities metrics – 

which was one of the goals when Boehm constructed his quality model. 

Consequently, the model presents one more metrics supposedly measuring 

a given primitive characteristic. 

Though Boehm’s and McCall’s models might appear very similar, the 

difference is that McCall’s model primarily focuses on the precise 

measurement of the high-level characteristics “As-is utility”, whereas 

Boehm’s quality model is based on a wider range of characteristics with 

an extended and detailed focus on primarily maintainability. 

3. Dromey’s Quality model(1995): 

Dromey has built a quality evaluation framework that analyzes the 

quality of software components through the measurement of tangible 

quality properties. Each artifact produced in the software life cycle 

can be associated with a quality evaluation model. Dromey gives the 

following examples of what he means by software components for 

each of the different models: 

• Variables, functions, statements, etc. can be considered components 

of the Implementation model. 

• A requirement can be considered a component of the requirements 

model. 

• A module can be considered a component of the design model; 

According to Dromey, all these components possess intrinsic 

properties that can be classified into four categories: 

• Correctness: Evaluates if some basic principles are violated. 

• Internal: Measure how well a component has been deployed 

according to its intended use. 

• Contextual: Deals with the external influences by and on the use of a 

component. 

• Descriptive: Measure the descriptiveness of a component (for 

example, does it have a meaningful name.) Dromey proposes a 

product-based quality model that recognizes that quality evaluation 

differs for each product and that a more dynamic idea for modeling 

the process is needed to be wide enough to apply for different 

systems. Dromey is focusing on the relationship between the quality 

attributes and the sub-attributes, as well as attempting to connect 

software product properties with software quality attributes. 



   

 
298 

Software Project  

Management 

 

298 

This quality model presented by R. Geoff Dromey is most recent 

model which is also similar to McCall’s and Boehm’s model. 

Dromey proposes a product-based quality model that recognizes that 

quality evaluation differs for each product and that a more dynamic 

idea for modeling the process is needed to be wide enough to apply 

for different systems. Dromey focuses on the relationship between 

the quality attributes and the sub-attributes, as well as attempts to 

connect software product properties with software quality attributes. 

1) Product properties that influence quality. 

2) High level quality attributes. 

3) Means of linking the product properties with the quality attributes. 

Dromey’s Quality Model is further structured around a 5-step 

process: 

1) Choose a set of high-level quality attributes necessary for the 

evaluation. 

2) List components/modules in your system. 

3) Identify quality-carrying properties for the components/modules 

(qualities of the component that have the most impact on the product 

properties from the list above). 

4) Determine how each property effects the quality attributes. 

5) Evaluate the model and identify weaknesses. 

4. ISO IEC 9126 Model 

 As, many software quality models were proposed, the confusion 

happened, and new standard model was required. Thus, ISO/IEC 

JTC1 began to develop the required consensus and encourage 

standardization world-wide. The ISO 9126 is part of the ISO 9000 

standard, and it is the most important standard for quality assurance. 

The first considerations originated in 1978, and in the year 1985 the 

development of ISO/IEC 9126 was started. 

 In this model, for software development companies, the totality of 

software product quality attributes was classified in a hierarchical 

tree structure of characteristics and sub characteristics. And the 

highest level of this structure consists of the quality characteristics 

and the lowest level consists of the software quality criteria. This 

model specified six characteristics including Functionality, the 

Reliability, Usability, Efficiency, Maintainability, and the 

Portability; all of which are further divided into 21 sub 

characteristics. All these sub characteristics are manifested 

externally when the software is used as part of a computer system, 

and thus are the result of internal software attributes. All the defined 

characteristics are applicable to every kind of software, including 

computer programs and data contained in firmware and provide 

consistent terminology for software product quality. And they also 

provide a framework for making trade-offs between software 

product capabilities. 



 

 
299 

 

Software Quality 5. FURPS Model -This model categorizes requirements into functional 

and non-functional requirements. The term FURPS is an acronym 

for Functional requirement(F) which relies on expected input and 

output, and in non functional requirements (U) stands for Usability 

which includes human factors, aesthetic, documentation of user 

material of training, (R) stands for reliability(frequency and severity 

of failure, time among failure), (P) stands for Performance that 

includes functional requirements, and finally (S) stands for 

supportability that includes backup, requirement of design and 

implementation etc. 

6. Ghezzi Model -This model states that the internal qualities of a 

software help the software developers to attain a collaborative result 

both in terms of external and internal qualities of a software. The 

overall qualities can be accuracy, flexibility, integrity, 

maintainability, portability, reliability, re-usability and usability. 

7. IEEE Model –It is a standard which defines various specifications 

for software maintenance, thus providing a quality model. This 

model gives a variety of measurement techniques for various 

qualitative factors like efficiency, functionality, maintainability, 

portability, reliability and usability. 

8. SATC's Model -SATC is an acronym for Software Assurance 

Technology Centre. Its objective is to improve software quality by 

defining metrics program which helps to meet the basic needs with 

least expenditure. This model tests a quality model by evaluating the 

results of the metrics used, and also on the basis of discussions based 

on the project. This model defines set of goals and process attributes 

based on the structure of ISO 9126-1 quality model. 

9. Capability Maturity Model -One of the most important quality 

models of software quality maintenance. The model lays down a 

very simple approach to define the quality standards. It has five 

levels namely – initial, repeatable, defined, managed, optimizing. 

At the initial level, the company is quite small, and it solely depends on an 

individual how he handles the company. The repeatable level states that at 

least the basic requirements or techniques have been established and the 

organization has attained a certain level of success. By the next level that 

is , defined, the company has already established a set of standards for 

smooth functioning of a software project/process. At the managed level, 

an organization monitors its own activities through a data collection and 

analysis. At the fifth level that is the optimizing level, constant 

improvement of the prevailing process becomes a priority, a lot of 

innovative approach is applied towards the qualitative enhancement. 

14.2.5 ISO 9126 

The ISO 9126 software is an international standard software quality 

model that helps in creating a solid framework for assessing software. This 

standard way of assessing software can be segregated in four different 



   

 
300 

Software Project  

Management 

 

300 

ways. These are used to address subjects of different nature. This software 

is profoundly used in a widespread way to embrace various models and 

metrics. The recommended features describe externally when software is 

found to be a result of attributes of internal attributes of software. 

The following ways by which a standard software quality model can be 

calculated are as follows: 

1. Quality Model. 

2. External Metrics. 

3. Internal Metrics. 

4. Quality in use Metrics. 

Like every software, ISO 926 software model has distinct qualities. These 

are laid on following basis: 

1. Functionality 

It is a key aspect of any product or service. It is due to this the 

software can fulfill a task and keep to its purpose. It is defined as a 

software product that helps to meet the needs of the clients. A 

functionality of software is dependent on its complexity. For 

example: an ATM machine. This is further divided in other 

categories are as follows: 

• Suitability. 

• Accuracy. 

• Interoperability. 

• Security. 

• Functional compliance. 

2. Reliability 

This characteristic determines the capability of software to sustain 

its use when put under different circumstances. 

3. Usability 

The usability of software is highly dependent on the functional uses 

of software. For example: ATM machine is used to withdraw cash. 

According to the usability of an ATM, the ATM is not affected or 

influenced by any amounts entered by the user. This is further 

divided into other sub-categories, and these are as follows: 

• Maturity. 

• Fault Tolerance. 

• Recoverability. 

• Reliability Compliance. 

 



 

 
301 

 

Software Quality 4. Efficiency 

This feature of the model is more concerned by resources of the 

system when used for providing a desired functionality. This type of 

feature is defined by amount of disk space, memory, and network. 

This is further divided into other sub-categories, and these are as 

follows: 

• Understandability. 

• Learner ability. 

• Operability. 

• Attractiveness. 

• Usability Compliance. 

5. Maintainability 

This property of maintainability of the software model is used to 

recognize and fix a defect accordingly. The model is inspected for 

the faults, and these can be identified easily. In accordance with this 

the cause and effect of maintainability of software is a concern. This 

is further divided into other sub-categories, and these are as follows: 

• Analyzability. 

• Resource Utilization. 

• Stability. 

• Testability. 

• Changeability. 

6. Portability 

According to this feature, capable software should easily adapt to the 

environmental changes frequently as possible. The designing of an 

object and the practices of its implementation are highly dependent 

on this feature. This standard method is further divided in few 

categories: 

• Adaptability. 

• Install ability. 

• Co-existence. 

• Replaceability. 

• Portability compliance. 

14.2.6 Product and Process Metrics 

What is process and product metrics? 

Product metrics − Describes the characteristics of the product such as size, 

complexity, design features, performance, and quality level. Process 

metrics − These characteristics can be used to improve the development 

and maintenance activities of the software. 



   

 
302 

Software Project  

Management 

 

302 

Software Metrics 

A software metric is a measure of software characteristics which are 

measurable or countable. Software metrics are valuable for many reasons, 

including measuring software performance, planning work items, 

measuring productivity, and many other uses. 

Within the software development process, many metrics are that are all 

connected. Software metrics are like the four functions of management: 

Planning, Organization, Control, or Improvement. 

Classification of Software Metrics 

Software metrics can be classified into two types as follows: 

1. Product Metrics: These are the measures of various characteristics of 

the software product. The two important software characteristics are: 

1. Size and complexity of software. 

2. Quality and reliability of software. 

 These metrics can be computed for different stages of SDLC. 

3. Process Metrics: These are the measures of various characteristics 

of the software development process. For example, the efficiency of fault 

detection. They are used to measure the characteristics of methods, 

techniques, and tools that are used for developing software. 

 

 

Figure 14.1 classification of software metrics 



 

 
303 

 

Software Quality Types of Metrics 

Internal metrics: Internal metrics are the metrics used for measuring 

properties that are viewed to be of greater importance to a software 

developer. For example, Lines of Code (LOC) measure. 

External metrics: External metrics are the metrics used for measuring 

properties that are viewed to be of greater importance to the user, e.g., 

portability, reliability, functionality, usability, etc. 

Hybrid metrics: Hybrid metrics are the metrics that combine product, 

process, and resource metrics. For example, cost per FP where FP stands 

for Function Point Metric. 

Project metrics: Project metrics are the metrics used by the project 

manager to check the project's progress. Data from the past projects are 

used to collect various metrics, like time and cost; these estimates are used 

as a base of new software. Note that as the project proceeds, the project 

manager will check its progress from time-to-time and will compare the 

effort, cost, and time with the original effort, cost and time. Also 

understand that these metrics are used to decrease the development costs, 

time efforts and risks. The project quality can also be improved. As quality 

improves, the number of errors and time, as well as cost required, is also 

reduced. 

Advantage of Software Metrics 

Comparative study of various design methodology of software systems. 

For analysis, comparison, and critical study of different programming 

language concerning their characteristics. 

In comparing and evaluating the capabilities and productivity of people 

involved in software development. 

In the preparation of software quality specifications. 

In the verification of compliance of software systems requirements and 

specifications. 

In making inference about the effort to be put in the design and 

development of the software systems. 

In getting an idea about the complexity of the code. 

In taking decisions regarding further division of a complex module is to be 

done or not. 

In guiding resource manager for their proper utilization. 

In comparison and making design tradeoffs between software 

development and maintenance cost. 

In providing feedback to software managers about the progress and quality 

during various phases of the software development life cycle. 

In the allocation of testing resources for testing the code. 



   

 
304 

Software Project  

Management 

 

304 

Disadvantage of Software Metrics 

The application of software metrics is not always easy, and in some cases, 

it is difficult and costly. 

The verification and justification of software metrics are based on 

historical/empirical data whose validity is difficult to verify. 

These are useful for managing software products but not for evaluating the 

performance of the technical staff. 

The definition and derivation of Software metrics are usually based on 

assuming which are not standardized and may depend upon tools available 

and working environment. 

Most of the predictive models rely on estimates of certain variables which 

are often not known precisely. 

14.2.7 Product versus Process Quality Management 

What is product quality and process quality? 

Product Quality: Means that the product is according to the 

specifications gathered by Businesss Analyst AND is bug free.Process 

Quality: Means the process abopted by the company to test the application 

should be defined well enough that it covers all the aspect of the 

application 

Product:  

In the context of software engineering, Product includes any software 

manufactured based on the customer’s request. This can be a problem-

solving software or computer based system. It can also be said that this is 

the result of a project.  

Process:  

Process is a set of sequence steps that have to be followed to create a 

project. The main purpose of a process is to improve the quality of the 

project. The process serves as a template that can be used through the 

creation of its examples and is used to direct the project.  

The main difference between a process and a product is that the process is 

a set of steps that guide the project to achieve a convenient product. while 

on the other hand, the product is the result of a project that is 

manufactured by a wide variety of people.  

                      Figure 14.2  Process and product quality 

 

 

Software 

Process 

 Software 

Project 

 
Software 

Product 

 

Software 

Product 

 



 

 
305 

 

Software Quality It is general, that the quality of the development process directly affects 

the quality of delivered products. The quality of the product can be 

measured, and the process is improved until the proper quality level is 

achieved. Figure 14.3. illustrates the process of quality assessment based 

on this approach. 

 

Figure 14.3 Process based quality assessment 

In manufacturing systems there is a clear relationship between production 

process and product quality. However, quality of software is highly 

influenced by the experience of software engineers. In addition, it is 

difficult to measure software quality attributes, such as maintainability, 

reliability, usability, etc., and to tell how process characteristics influence 

these attributes. However, experience has shown that process quality has a 

significant influence on the quality of the software. 

Process quality management includes the following activities: 

1. Defining process standards. 

2. Monitoring the development process. 

3. Reporting the software. 

14.2.8 Quality Management Systems 

Software quality management (SQM) is a management process that 

aims to develop and manage the quality of software in such a way so as to 

best ensure that the product meets the quality standards expected by the 

customer while also meeting any necessary regulatory and developer 

requirements, if any. Software quality managers require software to be 

tested before it is released to the market, and they do this using a cyclical 

process-based quality assessment to reveal and fix bugs before release. 

Their job is not only to ensure their software is in good shape for the 

consumer but also to encourage a culture of quality throughout the 

enterprise 

Quality management activities 

Software quality management activities are generally split up into three 

core components: quality assurance, quality planning, and quality 

control. Some like software engineer and author Ian Sommerville don't use 

the term "quality control" (as quality control is often viewed as more a 



   

 
306 

Software Project  

Management 

 

306 

manufacturing term than a software development term), rather, linking its 

associated concepts with the concept of quality assurance. However, the 

three core components otherwise remain the same. 

Quality assurance 

Software quality assurance sets up an organized and logical set of 

organizational processes and deciding on that software development 

standards — based on industry best practices — that should be paired with 

those organizational processes, software developers stand a better chance 

of producing higher quality software. However, linking quality attributes 

such as "maintainability" and "reliability" to processes is more difficult in 

software development due to its creative design elements versus the 

mechanical processes of manufacturing. Additionally, "process 

standardization can sometimes stifle creativity, which leads to poorer 

rather than better quality software."  

This stage can include: 

• encouraging documentation process standards, such as the creation 

of well-defined engineering documents using standard templates 

• mentoring how to conduct standard processes, such as quality 

reviews 

• performing in-process test data recording procedures 

• identifying standards, if any, that should be used in software 

development processes 

Quality planning 

Quality planning works at a more granular, project-based level, defining 

the quality attributes to be associated with the output of the project and 

how those attributes should be assessed. Additionally, any existing 

organizational standards may also be assigned to the project at this phase. 

Attributes such as "robustness," "accessibility," and "modularity" may be 

assigned to the software development project. While this may be a more 

formalized, integral process, those using a more agile method of quality 

management may place less emphasis on strict planning structures.[3] The 

quality plan may also address intended market, critical release dates, 

quality goals, expected risks, and risk management policy.  

Quality control 

The quality control team tests and reviews software at its various stages to 

ensure quality assurance processes and standards at both the 

organizational and project level are being followed. Some like 

Sommerville link these responsibilities to quality assurance rather than 

call it quality control. These checks are optimally separate from the 

development team to lend more of an objective view of the product to be 

tested. However, project managers on the development side must also 

assist, helping to promote as part of this phase a "culture that provides 

support without blame when errors are discovered." In software 

development firms implementing a more agile quality approach, these 

https://en.wikipedia.org/wiki/Software_quality_management#cite_note-SommervilleSoftware11-3


 

 
307 

 

Software Quality activities may be less formal; however, a switch to agile methods from a 

more formal quality management structure may create problems if 

management procedures aren't appropriately adapted. 

 Activities include: 

• release testing of software, including proper documentation of the 

testing process 

• examination of software and associated documentation for non-

conformance with standards 

• follow-up review of software to ensure any required changes 

detailed in previous testing are addressed 

• application of software measurement and metrics for assessment 

14.2.9 Process Capability Models 

Process Capability Modeling 

L. Bauer Published 2002Computer Science Every production process is 

subject to variations that limit our ability to produce a defect-free product. 

Process capability models (PCMs) are used to quantify likely process 

variations, which can then be included during the analysis of a product 

design. PCMs facilitate the flowback of capability information from 

manufacturing/sourcing to design and are an essential element of Design 

for Six Sigma (DFSS). This paper discusses how process capability can be 

measured and modeled, how models can be organized and saved, and how 

models can be retrieved, evaluated, and applied 

Capability Maturity Model (CMM) is a methodology used to develop, 

refine maturity of an organization’s software development process. It is 

developed by SIE in mid 1980. It is a process improvement approach. 

To assess an organization against a scale of 5 process maturity levels. It 

Deals with the what processes should be implemented & not so much with 

the how processes should be implemented. Each maturity level comprises 

a predefined set of process areas called KDA (Key Process Area), these 

KDA – Goals, Commitment, Ability, measurement, verification. 

Levels of Capability Maturity Model (CMM) are as following below. 

1. Level One : Initial – Work is performed informally. A software 

development organization at this level is characterized by AD HOC 

activities (organization is not planned.). 

2. Level Two : Repeatable – Work is planned and tracked. This level of 

software development organization has a basic and consistent project 

management processes to TRACK COST, SCHEDULE, AND 

FUNCTIONALITY. The process is in place to repeat the earlier successes 

on projects with similar applications. 



   

 
308 

Software Project  

Management 

 

308 

3. Level Three : Defined – Work is well defined. At this level the 

software process for both management and engineering activities are 

DEFINED AND DOCUMENTED. 

4. Level Four : Managed – Work is quantitatively controlled. 

• Software Quality management – Management can effectively 

control the software development effort using precise measurements. 

At this level, organization set a quantitative quality goal for both 

software process and software maintenance. 

• Quantitative Process Management – At this maturity level, the 

performance of processes is controlled using statistical and other 

quantitative techniques, and is quantitatively predictable. 

5. Level Five : Optimizing – Work is Based Upon Continuous 

Improvement. 

The key characteristic of this level is focusing on CONTINUOUSLY 

IMPROVING PROCESS performance. 

Key features are: 

• Process change management 

• Technology change management 

• Defect prevention 

14.2.10 Techniques to Help Enhance Software Quality 

Seven  Ways to Improve Software Quality Which Will Not Break the 

Bank 

The project management lifecycle is not complete without quality 

assurance and businesses are shifting their focus to build a high-quality 

product. If you are somehow related to an application or software, then 

you are surely looking out for ways to ensure the quality of your product 

without breaking the bank. Exceptional software quality practices promise 

cost-effectiveness and enhance the performance of the product being 

delivered. 

It is recommended to start implementing testing strategies at the initial 

stage as bugs can be easily identified and fixed. Bug identification in the 

later stage of the project may result in a complication that will eventually 

out-turn in more cost and time. To ensure that their testing goes in the 

right direction, consider using defect tracking software from the start of 

the testing. If issues are highlighted and solved in the initial stage, then it 

is a win-win situation and efficiency of the results is also increased. Issues 

can be exacerbated if they are not identified timely, and an expensive 

exercise would be carried out to fix the damage. 

Instead of spending unnecessary time and resources on the project to fix 

the software issues one should shift maximum focus on the quality of the 



 

 
309 

 

Software Quality software from the start. Below mentioned are seven points which one 

should consider increasing software quality and follow an assured 

approach through the development. 

1.  Test Often and Early 

 Early testing is paramount for a successful quality product and this 

aspect neither can be ignored nor delayed. If testing is carried out 

often and in the early phase, then issues and bugs won’t snowball 

into larger complications. If an issue becomes complex, then it 

means it will set off to be more expensive and can’t be ironed out 

easily. 

 Testers need to be involved at earliest so that they remain at top of 

all issues and cater to issues timely. Adopt an early automation 

approach from basic UI tests and then accelerate it as the project 

stabilizes. 

2.  Implement Quality Controls 

 Testers and developers should work in partnership from the start and 

monitor quality controls as it ensures that set standards are being 

met. This is an ongoing process that starts from the beginning and is 

carried out until the product is delivered. Testers and developers 

should work shoulder to shoulder to develop software strategy and 

deal with bugs in a structured way. 

3.  Promote Innovation 

 As much it is appreciated to follow important testing structures 

along with quality metrics, it is also endorsed to think out of the box. 

A great way to promote innovation is to automate the monotonous 

processes and that sufficient time can be saved and used wisely. 

4.  Incorporate Management Tools 

 Effective quality management tools can help the team to build a 

sustainable business. Stakeholders are only concerned about their 

product and its quality as they expect companies to do whatever it 

takes to meet the quality standards. With the right tools, 

transparency is increased, and employees do not get drained while 

performing day to day operations. Defect tracking software, issue 

tracking tool, project management software, and test automation 

tools are among the few which every software testing company 

should have. 

5.  Employee Training 

 Technology is evolving day by day and to cope up with the 

advancements, it is important to embrace the change and train your 

team accordingly. Professional training should be promoted, and 

employees should be encouraged to opt for certifications to work in 

their best capacity. As tools and techniques upgrade with each 

passing day, employees should upgrade their skill set in a similar 

manner. 



   

 
310 

Software Project  

Management 

 

310 

6.  Error Management and Analysis 

 An organized approach should be adapted to track the issues and 

manage the risk. For successful software development, a risk register 

plays a vital role and so does defect tracking software. These tools 

help to keep everyone informed regarding the risks and defects in 

the systems so everyone can play their part in proposing a 

convenient solution and resolving ambiguities. 

7.  Review, Revise and Remember 

 A high-quality product is not a coincidence, and it can’t happen 

overnight. It goes through a repeated process of review, revise, and 

remember which are explained as follows. 

Review: Testers constantly review the code and ensure that set quality 

standards are being met. 

Revise: To study the software process and understand which aspects 

worked for the project and which require more improvement. Analyze if 

innovation can transcend and changes can be made. 

Remember: While delivering a quality product, note down what worked 

for you and what areas didn’t align. List down all positives and negatives 

of a successful project. 

Final Thoughts 

The success of your software product highly depends on the way you deal 

with it from the initial phase and how intelligently you manage the issues 

encountered. It is imperative that your team knows what they are working 

on and what is expected from them to be delivered. The testing team 

should come up with a clear plan to start with the entire process. 

iTexico and Improving's nearshore delivery model for software quality 

assurance and collaborative, results-driven approach is designed around 

the success of your project. We’ll make use of the right technologies and 

tools for your strategic goals and work closely with your in-house team to 

ensure a timely delivery. 

14.2.11 Testing and Software Reliability 

Software testing can be stated as the process of verifying and validating 

that software or application is bug-free, meets the technical requirements 

as guided by its design and development, and meets the user requirements 

effectively and efficiently with handling all the exceptional and boundary 

cases.  

The process of software testing aims not only at finding faults in the 

existing software but also at finding measures to improve the software in 

terms of efficiency, accuracy, and usability. It mainly aims at measuring 

the specification, functionality, and performance of a software program or 

application.  



 

 
311 

 

Software Quality Software testing can be divided into two steps:  

1.  Verification: it refers to the set of tasks that ensure that software 

correctly implements a specific function.  

2.  Validation: it refers to a different set of tasks that ensure that the 

software that has been built is traceable to customer requirements.  

Verification: “Are we building the product, right?”  

Validation: “Are we building the right product?”  

What are different types of software testing?  

Software Testing can be broadly classified into two types:  

1.  Manual Testing: Manual testing includes testing software 

manually, i.e., without using any automated tool or any script. In this 

type, the tester takes over the role of an end-user and tests the 

software to identify any unexpected behavior or bug. There are 

different stages for manual testing such as unit testing, integration 

testing, system testing, and user acceptance testing.  

 Testers use test plans, test cases, or test scenarios to test software to 

ensure the completeness of testing. Manual testing also includes 

exploratory testing, as testers explore the software to identify errors 

in it.  

2.  Automation Testing: Automation testing, which is also known as 

Test Automation, is when the tester writes scripts and uses another 

software to test the product. This process involves the automation of 

a manual process. Automation Testing is used to re-run the test 

scenarios that were performed manually, quickly, and repeatedly.  

 Apart from regression testing, automation testing is also used to test 

the application from a load, performance, and stress point of view. It 

increases the test coverage, improves accuracy, and saves time and 

money in comparison to manual testing.  

What are the different techniques of Software Testing?  

Software techniques can be majorly classified into three categories:  

1.  Black Box Testing: The technique of testing in which the tester 

doesn’t have access to the source code of the software and is 

conducted at the software interface without concern with the internal 

logical structure of the software is known as black-box testing.  

2.  White-Box Testing: The technique of testing in which the tester is 

aware of the internal workings of the product, has access to its 

source code, and is conducted by making sure that all internal 

operations are performed according to the specifications is known as 

white box testing.  

 



   

 
312 

Software Project  

Management 

 

312 

 

Black Box Testing White Box Testing 

Internal workings of an application 

are not required. 

Knowledge of the internal workings 

is a must. 

Also known as closed box/data-

driven testing. 

Also known as clear box/structural 

testing. 

End users, testers, and developers. 
Normally done by testers and 

developers. 

This can only be done by a trial and 

error method. 

Data domains and internal 

boundaries can be better tested. 

Table 14.1 Comparison between black box and white box testing  

3.  Gray Box testing 

 Gray box testing is a combination of white box and Black box 

testing. It can be performed by a person who knew both coding and 

testing. And if the single person performs white box, as well as 

black-box testing for the application, is known as Gray box testing. 

What are different levels of software testing?  

Software level testing can be majorly classified into 4 levels:  

1.  Unit Testing: A level of the software testing process where 

individual units/components of a software/system are tested. The 

purpose is to validate that each unit of the software performs as 

designed.  

2.  Integration Testing: A level of the software testing process where 

individual units are combined and tested as a group. The purpose of 

this level of testing is to expose faults in the interaction between 

integrated units.  

3.  System Testing: A level of the software testing process where a 

complete, integrated system/software is tested. The purpose of this 

test is to evaluate the system’s compliance with the specified 

requirements. 

4.  Acceptance Testing: A level of the software testing process where a 

system is tested for acceptability. The purpose of this test is to 

evaluate the system’s compliance with the business requirements 

and assess whether it is acceptable for delivery 



 

 
313 

 

Software Quality 

 

Figure14.4 Different levels of software testing 

Software Reliability 

Software Reliability means Operational reliability. It is described as the 

ability of a system or component to perform its required functions under 

static conditions for a specific period. 

Software reliability is also defined as the probability that a software 

system fulfills its assigned task in a given environment for a predefined 

number of input cases, assuming that the hardware and the input are free 

of error. 

Software Reliability is an essential connect of software quality, composed 

with functionality, usability, performance, serviceability, capability, install 

ability, maintainability, and documentation. Software Reliability is hard to 

achieve because the complexity of software turn to be high. While any 

system with a high degree of complexity, containing software, will be hard 

to reach a certain level of reliability, system developers tend to push 

complexity into the software layer, with the speedy growth of system size 

and ease of doing so by upgrading the software. 

For example, large next-generation aircraft will have over 1 million 

source lines of software on-board; next-generation air traffic control 

systems will contain between one and two million lines; the upcoming 

International Space Station will have over two million lines on-board and 

over 10 million lines of ground support software; several significant life-

critical defense systems will have over 5 million source lines of software. 

While the complexity of software is inversely associated with software 

reliability, it is directly related to other vital factors in software quality, 

especially functionality, capability, etc. 

Unit Testing 

Integration Testing 

System Testing 

Acceptance Testing 



   

 
314 

Software Project  

Management 

 

314 

A good software reliability engineering program, introduced early in the 

development cycle, will mitigate these problems by: Preparing program 

management in advance for the testing effort and allowing them to plan 

both schedule and budget to cover the required testing. 

Continuous review of requirements throughout the life cycle, particularly 

for handling of exception conditions. If requirements are incomplete there 

will be no testing of the exception conditions. 

SoHaR software reliability engineers are experienced in all the stages and 

tasks required in a comprehensive software reliability program. We can 

support or lead tasks such as: 

1) Reliability Allocation 

2) Defining and Analyzing Operational Profiles 

3) Test Preparation and Plan 

4) Software Reliability Models 

1.   Reliability Allocation:- 

 Reliability allocation is the task of defining the necessary reliability 

of a software item. The item may be part of an integrated 

hardware/software system, may be a relatively independent software 

application, or, more and more rarely, a standalone software 

program. In either of these cases our goal is to bring system 

reliability within either a strict constraint required by a customer or 

an internally perceived readiness level or optimize reliability within 

schedule and cost constraints. 

 SoHaR will assist your organization in the following tasks: 

 Derive software reliability requirements from overall system 

reliability requirements. 

 When possible, depending on lifecycle stage and historical data, 

estimate schedule and cost dependence on software reliability goals. 

 Optimize reliability/schedule/cost based on your constraints and 

your customer's requirements, 

2.  Defining and Analyzing Operational Profiles:- 

 The reliability of software, much more so than the reliability of 

hardware, is strongly tied to the operational usage of an application. 

A software fault may lead to system failure only if that fault is 

encountered during operational usage. If a fault is not accessed in a 

specific operational mode, it will not cause failures at all. It will 

cause failure more often if it is in code that is part of an often used 

"operation" (An operation is defined as a major logical task, usually 

repeated multiple times within an hour of application usage). 

Therefore, in software reliability engineering we focus on the 



 

 
315 

 

Software Quality operational profile of the software which weighs the occurrence 

probabilities of each operation. Unless safety requirements indicate a 

modification of this approach, we will prioritize our testing 

according to this profile. 

 SoHaR will work with your system and software engineers to 

complete the following tasks required to generate a useable 

operational profile: 

 Determine the operational modes (high traffic, low traffic, high 

maintenance, remote use, local use etc). 

 Determine operation initiators (components that initiate the 

operations in the system). 

 Determine and group "Operations" so that the list includes only 

operations that are significantly different from each other (and 

therefore may present different faults). 

 Determine occurrence rates for the different operations. 

 Construct the operational profile based on the individual operation 

probabilities of occurrence. 

3.  Test Preparation and Plan:- 

 Test preparation is a crucial step in the implementation of an 

effective software reliability program. A test plan that is based on 

the operational profile on the one hand, and subject to the reliability 

allocation constraints on the other, will be effective at bringing the 

program to its reliability goals in the least amount of time and cost. 

 Software Reliability Engineering is concerned not only with feature 

and regression test, but also with load test and performance test. All 

these should be planned based on the activities outlined above. 

 The reliability program will inform and often determine the 

following test preparation activities: 

 Assessing the number of new test cases required for the current 

release. 

 New test case allocation among the systems (if multi-system). 

 New test case allocation for each system among its new operations. 

 Specifying new test cases 

 Adding the new test cases to the test cases from previous releases. 

4.  Software Reliability Models:- 

 Software reliability engineering is often identified with reliability 

models, in particular reliability growth models. These, when applied 

correctly, are successful at providing guidance to management 

decisions such as: 

 



   

 
316 

Software Project  

Management 

 

316 

Test schedule 

Test resource allocation 

Time to market 

Maintenance resource allocation 

14.2.12 Quality Plans 

Quality planning is the process of developing a quality plan for a project. 

The quality plan defines the quality requirements of software and 

describes how these are to be assessed. The quality plan selects those 

organizational standards that are appropriate to a particular product and 

development process. Quality plan has the following parts: 

1. Introduction of product. 

2. Product plans. 

3. Quality goals. 

4. Risks and risk management. 

The quality plan defines the most important quality attributes for the 

software and includes a definition of the quality assessment process. Table 

14.2. shows generally used software quality attributes that can be 

considered during the quality planning process 

 

Table 14.2 Software quality attributes 

14.3 SUMMARY 

In this software quality chapter, you learned about The Place of Software 

Quality in Project Planning, Importance of Software Quality, Defining 

Software Quality, Software Quality Models, ISO 9126, Product and 

Process Metrics, Product versus Process Quality Management, Quality 

Management Systems, Process Capability Models, Techniques to Help 

Enhance Software Quality, Testing and its types, Software Reliability, 

Quality Plans etc. Still, you had a doubt go through references and 

bibliography                                                                                                                                                                        

14.4 EXERCISE 

Q.1 Explain place of Software Quality in Project Planning 

Q.2 Write about Importance of Software Quality 



 

 
317 

 

Software Quality Q.3 Explain in detail Software Quality Models and it’s types. 

Q.4  What is process and product metrics? 

Q.5 Write short notes on software metrics 

Q.6 Write about types of software metrics 

Q.7 What are the advantages and disadvantages of software metrics? 

Q.8 Explain in detail Product versus Process Quality Management  

Q.9 Write short notes on Quality Management Systems 

Q.10 Explain in detail Process Capability Models 

Q.11 Write about Techniques to Help Enhance Software Quality 

Q.12 Explain different levels of software testing 

Q.13 Compare black box testing and white box testing 

Q.14 Explain software testing and it’s types in detail 

Q,15 Explain different levels of software testing 

Q.16 What are the Quality Plans? 

Q.17 Explain Software Reliability 

14.5 LIST OF BOOKS AND REFERENCES 

1. Software Project Management Bob Hughes, Mike Cotterell, Rajib 

Mall TMH 6 th 2018 

2. Project Management and Tools & Technologies – An overview 

Shailesh Mehta SPD 1st   2017  

3. Software Project Management Walker Royce Pearson 2005 

4. https://smartbear.com 

5. https://www.tutorialspoint.com 

6. https://www.professionalqa.com 

7. https://msritse2012.wordpress.com 

8. http://moodle.autolab.uni-pannon.hu 

9. https://en.wikipedia.org 

10. https://www.semanticscholar.org 

11. https://www.itexico.com 

12. https://www.geeksforgeeks.org 

13. https://www.javatpoint.com 

 



   

 
318 

Software Project  

Management 

 

318 

15 
PROJECT CLOSEOUT 

Unit Structure 

15.0 Objectives 

15.1 Introduction 

15.2 An Overview 

15.2.1 Project closure 

15.2.1.1 What is closing a project? 

15.2.1.2 When do you close a project (Reasons)? 

15.2.1.3 How to close a project? 

15.2.1.4  Types of project closure 

15.2.1.5 Steps to closing a project and project closure 

checklist(Process) 

15.2.1.6 Importance of closing a project 

15.2.2 Financing and Financial Closure 

15.2.2.1  Importance of Project Financing 

15.2.2.2  Important issues in Financing Of Project 

15.2.2.3  The keys to a faster close (Financial) 

15.2.3 Project Closeout Report 

15.2.3.1 What is a Project Closure Report? 

15.2.3.2 When do I use a Project Closure Report? 

15.2.3.3 Eight Steps to Writing a Project Closure Report 

15.3 Summary 

15.4 Exercise 

15.5 List of Books and References 

15.0 OBJECTIVES 

After going through this chapter, you will be able to: 

• What is  project closeout? 

• Reasons for Project Closure 

• Importance of closing a project 

• Project Closure Process  

• Performing a Financial Closure 

• Project Closeout Report 

 



 

 
319 

 

Project Closeout 15.1 INTRODUCTION 

The Project Closure Phase is the fourth and last phase in the project life 

cycle. In this phase, you will formally close your project and then report 

its overall level of success to your sponsor. Project Closure involves 

handing over the deliverables to your customer, passing the documentation 

to the business, cancelling supplier contracts, releasing staff and 

equipment, and informing stakeholders of the closure of the project. After 

the project has been closed, a Post Implementation Review is completed to 

determine the project’s success and identify the lessons learned 

15.2 AN OVERVIEW 

15.2.1 Project closure 

The project lifecycle consists of five groups:   

• Initiating process group 

• Planning process group 

• Executing process group 

• Monitoring and controlling process group 

• Closing process group 

The closing phase of project management is the final phase of the project 

lifecycle. This is the stage where all deliverables are finalized and 

formally transferred, and all documentation is signed off, approved, and 

archived. 

The project closure process ensures that:  

• All work has been completed according to the project plan and 

scope. 

• All project management processes have been executed. 

• You have received final sign-off and approval from all parties. 

The project management closure process also gives the team the 

opportunity to review and evaluate the project’s performance to ensure 

future projects’ success.  

15.2.1.1 What Is closing a project? 

It’s has been established that every project has a start date and an end date. 

So, the process of completing the work on the project to an end is exactly 

what closing a project is. Nothing more, nothing less. If you are not 

closing an exercise or ending an exercise, then you need to know that the 

exercise isn’t a project. 



   

 
320 

Software Project  

Management 

 

320 

It could be an operation. One of the differences between a project and an 

operation is that while projects are temporary, operations are ongoing and 

continuous. No matter how long the duration of a project is, it must end. 

15.2.1.2 When do you close a project(Reasons)? 

Well, there are three circumstances under which a project can be closed. 

Yeah, THREE! One out of every ten readers of this article will find this 

surprising. Just give me a second and I will explain the three times. 

i.   When the Project has delivered all the objectives and/or result. 

 This is probably the most popular and most desirous time when a 

project should be closed. At the beginning of the project, a set of 

objectives, deliverables, and results were set. The PM and the whole 

organization rolled up their sleeves and started working towards 

building and delivering the objectives and deliverables for the 

project. Once the objective is met and the deliverables completed 

and accepted by the Project Sponsor/owner, it is time to close the 

project. Reason? The PM and the team have completed all they 

committed to, and there isn’t anything left to do on the project. What 

if there is a modification or an addition to the deliverables of the 

project. Well, that’s called scope creep, if there is no adjustment to 

other components that may be affected, and once the addition didn’t 

go through change control for approval, and no re-baseline, then it 

must be initiated as a new project, after closing the current project. 

 For PRINCE2, Once the project has delivered what was specified in 

the business case of the project mandate, while for PMI, once it has 

developed the content of the approved scope. 

ii.    When the objectives of the project can’t be met again 

 This is often called TERMINATION. Hopefully, it can be done 

early. 

 This is usually not a very pleasant one, but it’s usually a reality. It 

could be because of the complexity of the project or a combination 

of many other things. I recall working on a project with some client 

in the financial services industry a few years back. The business case 

and feasibility were highly optimistic, and the organization decided 

to invest in the project hoping for the objective to be realized. 

However, after series of attempts, efforts, and re-baselining by the 

project team and the stakeholder, it became clear to even the blind 

stranger that the approach and the technology chosen for the project 

couldn’t meet the objective, the organization had to terminate the 

project for that same reason. 

 At times it could be that the organization had spent so much money 

on the project, yet they haven’t realized any benefit and at every 

point in time, there was no sign that the project would still deliver 

the objective.  



 

 
321 

 

Project Closeout  Please note that in most cases, the project manager and the team are 

not responsible for this, and often should not be blamed. 

iii.   When the objective of the project is no longer needed 

 This is often called early termination 

 We live in a dynamic and constantly changing environment, and 

there are many actors and factors driving the market and corporate 

space. Most of these factors could be a technological change, a 

governmental policy, a change in strategy and direction for the 

organization etc. PRINCE2 advises that at every point on the 

project, the project organization should continually check for 

business justification, to ensure the business case is still valid. If at 

any point the organization realizes that the business case has become 

invalid, the only thing left is to close the project. A typical example 

was a project I was working on for a client to penetrate a new 

market and release a product that would solve a particular challenge. 

We were about 45% into the project when the government 

introduced an initiative that would address a similar challenge at no 

cost. It became obvious that the product would not make many sales, 

hence the objective and business case became invalid. We had to 

terminate the project immediately. This is better than going head to 

complete the project. Organizations don’t just initiate or complete a 

project for the mere sake of completing a project, the product of the 

project must be valid all through and the end product must be 

desired and desirable at all times. 

 Another example was a consulting project I was working on with a 

startup to rebrand the company. Midway into the project, there was a 

merger and acquisition with another company it became instantly 

known that there was no need to rebrand the company anymore. 

Again, this could be at no fault of the project team. 

In the next section, I would highlight how to close a project, irrespective 

of when it is closed. 

15.2.1.3 How to close a project 

This process will be broken that into two different sections. The first 

section will highlight steps to closing a project whose objectives have 

been met, while the second would highlight the steps to close a project 

whose objective is either not needed again or can’t be met. 

How to close a project whose objective has been met. 

1. Confirm that all the deliverables have been completed and accepted 

by the appropriate approving authority. Here you will need to 

reference your plan, specifically your approved scope and 

acceptance criteria 

2. Obtain formal acceptance and approval (this could be by way of 

formal SIGN-OFF or whatever method has been agreed upon). 



   

 
322 

Software Project  

Management 

 

322 

3. Close any procurement component of the project 

4. Gather the team and update lessons learned on the project 

5. Release all resources and provide feedback as required 

6. Complete end of project report and archive project information 

7. Celebrate. And I mean it. 

How to close a project whose objective can’t be met or whose objective is 

not needed again 

1. Validate the reason for the early termination 

2. Determine all the deliverables that have been created so far, and 

ensure they are accepted 

3. Obtain formal closure notification from the Sponsor 

4. Close any procurement engagement 

5. Update lessons learned with the team 

6. Release resources and complete end of project report, capturing the 

stage the project was at when it was closed, the reason it was closed, 

and the lessons learned and archive project information. 

7. Celebrate (if you have the courage to) 

15.2.1.4 Types of project closure 

There are 5 types of Project Closure 

1. Normal: the project goes to completion. 

2 Premature: the project is completed early and meets performance 

specifications. 

3. Perpetual: the project keeps getting extended primarily because of 

changes in the   constraints. 

4. Change in Priorities: the project is cancelled due to changes in the 

constraints. 

5. Failed Project: the project is: 

• Cancelled. 

• Completed but was considered a failure because it didn’t 

perform as expected. 

15.2.1.5 Steps to closing a project and project closure 

checklist(Process) 

The close of the project is the final phase of your job, it’s the last turn of 

the project life cycle, and like any other aspect of a project, it requires a 

process. The following are five steps you should take to make sure you’ve 

dotted all the I’s and crossed all the T’s, as well as taken full advantage of 

the experience. 

 



 

 
323 

 

Project Closeout 1.  Arrange a Postmortem 

 Managing a project isn’t only about tasks and resources, budget, and 

deadlines, it’s an experience you can constantly learn from. While 

you should have been learning throughout the project, now is a great 

time to look back without the pressure and distractions that might 

have dulled your focus. 

 Gather the core team to invite feedback about what worked, and 

what didn’t. Encourage honesty. By documenting the mistakes and 

the successes of the project, you’re building a catalog that offers 

historic data. You can go back and look over the information for 

precedents when planning for new projects. 

 Projects are never standalone things, but part of a continuum, where 

the specifics might vary, but the general methods usually remain the 

same. There’s a wealth of knowledge produced after any project 

closes. 

2.  Complete Paperwork 

 As noted, projects generate reams of documents. These documents 

are going to have to get sign off and approval from stakeholders. 

Everything needs attention and must be signed for, which is the legal 

proof that in fact these documents have concluded. That includes 

closing all contracts you might have made with internal partners or 

vendors or any other resources you contracted with. 

 This includes addressing all outstanding payments. You want to 

make sure that all invoices, commissions, fees, bonus, what have 

you, are paid. Complete all the costs involved with the project. It’s 

not done if it’s not paid for. 

 Project management software can help you organize all these 

documents. ProjectManager acts like a hub for all your project files. 

You can track them on our list view, which is more than the usual 

to-do list app. For one thing, you can see the percentage complete 

for each item on the list. Now you know if that contractor has been 

paid and whether you can sign off on the contract. You can even set 

up notifications to make sure your payments are delivered on time. 

Try it out for yourself with this free trial.  

3.  Release Resources 

 You assemble a team for the project, and now you must cut them 

loose. It’s a formal process, and a crucial one, which frees them for 

the next project. Each team is brought together for the mix of skills 

and experience they bring to a project. The project determines the 

team members you’ll want to work with, and each project is going to 

be a little bit different, which will be reflected in the team hired to 

execute it. 



   

 
324 

Software Project  

Management 

 

324 

 This is true for internal as well as external resources. The external 

ones might be more obvious, as you contracted with them, and that 

contract is going to have a duration. When it’s over, make sure 

they’re all paid in full so they can sign off and leave. But internal 

resources remain, so you have to remind yourself that their time on 

the project is also limited, and you might be blocking other team’s 

projects if you don’t release your resources once the project is done. 

4.  Archive Documents 

 There are lessons to be learned from old projects, which is why you 

meet with your team regularly during the project and look back on 

the process afterwards. However, if you don’t have an archive in 

which to pull the old records, then whatever knowledge you gain is 

lost because of poor organization and management. You worked 

hard to have great project documentation, don’t lose it. 

 Before you close a project, archive all the documents and any notes 

and data that could prove useful. Even if you never access it, there’s 

a need to keep a paper trail of the work done on any project for other 

people in the organization. This might include legal teams, or HR 

teams, or even your successor. You never know when someone 

might have to go back and respond to a question or want to learn 

how an old issue was resolved. Consider it like putting away 

provisions for the winter. 

5.  Celebrate Success 

 If it sounds silly to you, then you’re not doing your job. There’s 

nothing silly about rewarding your team to acknowledge a job well 

done. It creates closure, which is what this part of the project is all 

about, but it also plants a seed that will bloom in later projects when 

you work with members of the old team. 

 That’s because when you note a job well done, you’re building 

morale. It makes team members feel better. You might have been a 

hard taskmaster in the project, but you give them their due for a job 

well done. That creates loyalty, and they’re going to work even 

harder for you the next time. And there will be the next time because 

a happy team is a team that you retain. Why would you want to close 

a project and lose the very resources that made it a success? Loosen 

up! 

Project Closure Checklist 

To make sure that every i is dotted and t crossed, follow this step-by-step 

project closure checklist. 

1. Start at the beginning with the project scope document you created 

and make sure that you’ve met all the requirements listed there. 

2. Make sure that all deliverables have been handed off and signed by 

stakeholders, getting their approval and satisfaction. Keeping track 



 

 
325 

 

Project Closeout of all those deliverables can be confusing unless you’re using project 

management software. Project Manager has a board view that gives 

you transparency into the process so you can see that everything has 

been handed off. Customizable columns allow you to add sign-off as 

a step to make sure stakeholders have approved the deliverable. 

3. Other project documents must also be signed by the appropriate 

person; this includes any outstanding contracts and agreements with 

vendors and other contractors. 

4. Once documents are signed off on, then process them and pay off all 

invoices and close out any project-related contracts. 

5. Add all documents together, including finalizing all project reports, 

then organize and archive them as historical data to be used for 

future reference. 

6. Use collected paperwork to identify and document the lessons 

learned over the course of the project, including any feedback from 

stakeholders, so you don’t make the same mistakes in future 

projects. 

7. Assign a transition support person to shepherd the project after 

completion so that the project closure is thorough. 

8. Release or reassign the project resources, which includes your team 

and other project personnel and any equipment or site rentals used 

for the project. 

9. If you’ve not used a project management software, get one, as it 

helps control not only the life cycle of the project but also the 

process of closing the project thoroughly. 

10. Finally, but perhaps most importantly, celebrate with your project 

team. They did the work and deserved credit and an opportunity to 

blow off steam until the next project is started. 

15.2 .1.6 Importance of closing a project 

At first glance, it might seem like completing the first four phases of the 

project lifecycle would be all you need to do to tie up your project and call 

it good.  

However, without a formal closing process, you risk letting crucial details 

fall through the cracks, which can result in confusion, a never-ending 

project, dissatisfied clients, and even liability issues.  

Project closure helps avoid:  

• Repeating mistakes on future projects and objectives 

• Having final products or deliverables without dedicated support and 

resources 

• Failing to identify the team or individuals who will own and 

maintain the solution following final delivery 



   

 
326 

Software Project  

Management 

 

326 

• Creating liability issues resulting from incomplete payments, 

contracts, or deliverables 

Following a clear project closure plan helps you properly transition your 

solution to the client or end-user. This process ensures the final 

stakeholders have the information, resources, and training to successfully 

manage and use the product. 

The project closure process also ensures the project is formally completed 

and is no longer considered a project, allowing you to hand the reins over 

to the correct team in charge of managing and maintaining the project’s 

outputs.  

By officially closing a project, you minimize risks, increase client 

satisfaction, and ensure all parties are on the same page. In other words, 

project closure is a process you can’t afford to skip.   

15.2.2 Financing and Financial Closure 

Financial close occurs when all the project and financing agreements have 

been signed, all conditions on those agreements have been met, and the 

private party to the PPP can start drawing down the financing to start work 

on the project. As noted in Yescombe, financial close conditions are often 

circular—the PPP contract does not become effective until funding is 

available for draw down (that is, funding availability is a Condition 

Precedent for contract effectiveness), and vice versa. 

• One of the important stages in project life cycle is to decide the 

‘sources of finance’ and finalize the ‘financial closure’. 

• During project life cycle various sources of finance are available 

which carry different terms, conditions, rules, maturity period, 

repayment schedules so study of these factors and  

thereby deciding the sources of finance is very crucial. 

15.2.2.1  Importance of Project Financing 

• Project Cost 

• Cost of project will be affected by sources of funds carrying lower 

cost, easy and timely availability. 

• Cost over-run and time   

• Cheap and easily available over-run finance will facilitate timely 

completion of project. 

• Better profitability  

• Low cost of finance will improve profitability. 

• Quicker financial closure  

• Easy mix of sources of financing will help quicker financial closure. 



 

 
327 

 

Project Closeout • Low interest burden, low  

• Other benefits depreciation, income tax, pricing of product, 

repayment of loan. 

15.2.2.2  Important issues in Financing of Project 

• Modes of Finance  

• Cost of Capital & Capital Structure 

• Lending policies and appraisal norms of financial institutions 

• Project financing and venture capital 

• Dividend policies 

• Corporate taxation and its impact 

• Exchange risk management 

• International Financial Management 

• Leverage analysis and financial decisions etc. 

The financial close is an arduous process that finance and accounting staff 

dread. Tracking down information from other departments, ensuring all 

transactions have been recorded, and identifying and correcting errors are 

time-consuming, labor-intensive tasks requiring long hours and overtime. 

Pressure to close the books quickly so financial statements can be 

delivered on time, combined with the need for accuracy and intense focus 

on compliance only add to the stress. 

Fortunately, there are several steps companies can take to save time, 

reduce errors and increase efficiency. 

15.2.2.3  The keys to a faster close (Financial) 

1.  Define and assign. Document every step in the process and the 

tasks required to complete them. Your list should indicate when each 

task needs to be completed and, where there are dependencies, in 

what order. Next, assign responsibility for completing individual 

tasks to specific people within the department and hold them to a 

deadline. This is the easiest and most basic step a company can take 

to improve the close process and should be standard practice. 

Unfortunately, it typically isn't. 

 Accounting leaders often assume people on their team know what 

they need to do, so tasks are managed informally. This approach can 

work in a small company with only one or two bookkeepers, but it 

won't scale as a company grows and the number of transactions 

being processed each month increases. 

 2.  Reconcile accounts more frequently. Account reconciliation is a 

fundamental part of the accounting process and helps to ensure the 

transactions are recorded accurately to the correct accounts and in 

accordance with generally accepted accounting principles (GAAP). 



   

 
328 

Software Project  

Management 

 

328 

But while reconciliation is one of the easiest ways to identify errors, 

many organizations only review their accounts monthly. That’s 

partly because more frequent reconciliation isn't mandated, and 

partly because it's usually a time consuming, largely manual task. 

 Reconciling accounts at the end of the month, however, only delays 

the inevitable, as any errors that are found must be corrected. This 

increases the effort required to close the books and ultimately delays 

the process. Performing reconciliations more frequently means 

errors are spotted sooner and can be addressed before the close 

process begins, saving time. The challenge is finding a way to do so. 

Automating the process is the key. 

3.  Minimize data entry. Accounting demands accuracy, yet most 

accounting departments continue to enter vendor invoices, customer 

payments and other data manually. And the risk of errors increases 

with every keystroke. Since computer keyboards aren't going away 

anytime soon, it's impossible to eliminate data entry errors. They can 

be reduced, however. 

 Start by avoiding paper wherever possible. Request that vendors 

send invoices electronically, in XML format for instance, so they 

can be imported directly into your accounting system. For suppliers 

that lack these capabilities, consider purchasing a dedicated scanner 

with optical character recognition (OCR) software. 

 Next, stop using spreadsheets to manage allocations, depreciation, 

and other calculations. Sure, they're convenient and relatively easy 

to use, but spreadsheet data still must be entered into your 

accounting system manually, which not only increases the risk of 

errors, but also takes time. 

4.  Simplify the chart of accounts. A bloated chart of accounts invites 

errors. While a bookkeeper who's spent decades with the same 

company might be able to remember hundreds of different account 

codes and all their permutations, most people can't. 

 Coding errors may not happen every day, but they happen, and 

probably more often than anyone realizes. And, as the number of 

monthly transactions increases, the more significant those occasional 

errors become. A 0.5% error rate isn't a big deal when there are only 

1,000 transactions. At 10,000, however, it means 50 transactions 

recorded incorrectly. Correcting that many mistakes take hours, if 

someone even spots the errors. 

 Of course, a company's chart of accounts becomes complex for a 

reason – usually because the business needs to track operational 

performance and the accounting system is the only way to do it. So, 

before the chart of accounts can be cleaned up, you need to find 

another way of tracking performance. 

5.  Improve access to information. Waiting for information from other 

departments is a common source of frustration and delay. To close 

the books, for instance, accounting needs to know how much 



 

 
329 

 

Project Closeout revenue was generated. This requires gathering data from sales, 

project management, shipping, and anyone else who influences 

revenue. They may also need information on fixed assets, inventory, 

or other data for reporting. 

 Unless accounting staff have access to the systems where this 

information is stored, which is seldom the case, they must rely on 

their peers for updates. Managers in other parts of the organization 

don't always share the accounting team's sense of urgency or 

attention to detail, however. Information frequently comes in at the 

last minute, requires clarification or is incomplete. 

6.  Automate intercompany consolidation.  Managing the close 

process is even more challenging for companies with subsidiaries, 

especially if there are multiple ERP or accounting systems to 

contend with. The close process can't be completed at the corporate 

level until each subsidiary has closed its own books. Then, data from 

each of those businesses must be pulled together, put into a common 

format and mapped to the correct fields to allow accurate reporting. 

Intercompany transactions must also be identified and eliminated. 

Only then can the parent company finish closing its own books and 

produce consolidated financial results. 

 The intercompany consolidation process is by far the most difficult 

and time-consuming aspect of the accounting cycle. It is often done 

manually, using spreadsheets. Once again, spreadsheets aren’t the 

ideal way to manage complex calculations. They’re also a poor 

choice for handling large volumes of data and, more importantly, 

they don’t provide a record of data or formula changes. If mistakes 

are made, spreadsheet can’t be audited to see what went wrong. 

15.2.3 Project Closeout Report 

Project Closure report helps you take the steps needed to formally wind-

up your project. 

The report helps you undertake the Project Closure phase within a project, 

by documenting all of the tasks needed to complete your project and hand 

over the deliverables to your customer. 

It is critical that you complete the Project Closure phase properly, as the 

manner within which these closure steps are taken will determine the final 

success of your project. 

Using this Project Closure Report you can perform Project Closure by: 

• Identifying the project completion criteria 

• Listing any outstanding activities or deliverables 

• Creating a plan for passing deliverables to your customer 

• Planning the handover of project documentation 

• Closing supplier contracts and agreements 



   

 
330 

Software Project  

Management 

 

330 

• Releasing projects resources to the business 

• Communicating the closure of the project 

This Project Closure Report is unique because it: 

• Includes pre-formatted sections and tables 

• Lists all of the key activities needed to close a project 

• Contains step-by-step instructions to help you complete it 

• Has lots of practical examples, tips and hints 

• Is pre-completed to save you time and effort 

Written by project experts, this Project Closure Report helps you to 

document all of the steps needed to close your projects quickly and 

efficiently. 

15.2.3.1 What is a Project Closure Report? 

A Project Closure Report describes how you intend to close your projects. 

The Project Closure Report confirms that the objectives have been met, 

the deliverables have been handed over to the customer and that project 

closure can commence. Every Project Manager needs to complete a 

Project Closure Report to gain agreement from their Sponsor that the 

project is ready for closure. Once the Project Closure Report has been 

approved, the Manager can proceed with the actions needed to close the 

project swiftly. 

15.2.3.2 When do I use a Project Closure Report? 

A Project Closure Report should be documented any time that a project is 

ready for closure. Using this Project Closure Report, you can document 

the actions needed to perform project closure immediately. This Project 

Closure Report already includes the sections, tables, and practical 

examples you need, to save you time. 

 15.2.3.3 Eight Steps to Writing a Project Closure Report 

Every project no matter how complex it may be will eventually come to 

the end of its lifecycle. One of the most significant documents that have to 

be submitted once a project reaches its end is the Project Closure Report. 

The Project Closure Report is the final document produced upon the 

completion of a project. The report details everything to do with the 

project is often used by the various stakeholders involved in the project to 

assess the success of the project. Besides the assessment of the project’s 

success, the document is also an invaluable tool to use for identifying the 

best practices to ensure that all future projects go on smoothly. 

Writing a Project Closure Report is not as simple as it seems. There are 

key steps to be followed. The steps relate to a specific part of the project 

and must be followed to the dot for effective results. Here are the steps to 

help you write your Project Closure Report. 



 

 
331 

 

Project Closeout 1.  Give the Project Overview Including A Summary Statement 

 The first step to writing this project closing document is to give your 

general overview of the whole project and the summary statement. 

An overview statement is a brief description of what the project was 

about. It looks at the ‘what’ side of a project. It looks at what needed 

to be done during the project and how it was done. In addition, an 

overview investigates and describes things like the 

Opportunity/Problem, Goal, and Objective, Success Criteria and any 

risks or assumptions about the project. 

 On the other hand, the summary statement of the project in a Project 

Closure report will be looking at the overall summary of what’s in 

the report. One important thing to note is the key difference between 

the project overview and the summary statement. The overview is 

about the project, its scope, and the activities that were done and the 

summary statement is about the report itself and things contained in 

the report. 

2.  Describe the Results and Outcomes Of The Project 

 Before you set out to do your project, chances are, you first wrote 

down your key performance and indicators and key targets. In 

addition to the KPI’s, another thing you probably had was outcome 

targets. On this section, the goal is to look at the whole project in 

relation to the Key Performance Indicators that you would have set 

and see the outcomes achieved from that. 

 What are the project outcomes? Project outcomes refer to the level 

of performance or achievement that would have occurred due to the 

activities of the teams on the project. However, measuring project 

outcomes correctly is not an easy task. There are three metrics that 

you can use to determine if your project outcomes were positive or 

negative. The metrics are stakeholder satisfaction, project cost, and 

overall quality of the project. 

3.  Describe the Project Scope, Project Schedule, And Project Cost 

 This step is closely related to the above but independent in its own 

way when it comes to your project closure report. Defined, the 

project scope is the part of a project where you document the 

specific goals, deliverables, features, deadlines, and the tasks of a 

project. It looks at everything that’s needed to get a project through 

from beginning to completion. This part of the Project Closure 

Report will look at the overall scope of the Project in relation to the 

actual project schedule and ultimately the cost. 

 When a Scope analysis is initially done, everything including the 

project costs is factored into the initial analysis. These figures, 

however, will vary and shift as the project goes which is why it’s 

important to do such a comparison of the actual vs the targeted costs 

to see whether you ended up going over budget or remained under 

budget. 

https://www.projectpractical.com/5-ways-to-measure-project-success-what-metrics-to-use/


   

 
332 

Software Project  

Management 

 

332 

4.  Project Performance Analysis 

 The project performance analysis can easily qualify as the most 

important step of the whole project closure report. The performance 

analysis expands on step 3 and really dives deep into the budget and 

compare the actual costs and schedule of the project with the set 

baseline. To be effective, the performance analysis must be 

subdivided into three parts namely, the Goals and Objective 

Performance, the Success Criteria Performance and the Schedule 

and Budget Performance. 

i.  Goals and Objectives Performance 

 Before you began the project, in the project outline, what were the 

set goals and objectives for the project? What did you hope to have 

achieved by the end of the project? How many of those goals have 

actually been achieved? In addition, how many of those have had to 

be revised as the conditions on the ground changed? 

 The questions above are some of the key questions that should be 

asked when looking at the Goals and Objectives Performance 

Analysis of the project. 

ii.  Success Criteria Performance 

 The success Criteria is the one that deals directly with the KPI’s. 

One thing great project manager do before they embark on a new 

project is to define success before the project begins. The definition 

of success for a project can differ from one project to the next. 

Therefore, you must look at how you defined the success of your 

project and check to see whether you got there. 

iii.  Schedule and Budget Performance 

 Lastly, under performance analysis, you will have to look at 

your Schedule and Budget Performance. On your project Scope, 

what were the set deadlines? Did you meet those deadlines? If not, 

what were the main reasons for the failure to meet the deadlines? 

The same questions will apply when you look at your budget. Was it 

enough or did you have to go to the bank or client for more funding? 

 In any case, the key thing would be to analyze and compare your 

actual performance with your set targets. 

5.  Project Highlights (Important Aspects of The Project) 

 The project Highlight Section looks at the highlights of the whole 

project throughout the whole timeline. It usually includes high-level 

project information such as the requests and any other issues that 

arose within the project. 

 Compiling the highlight report and adding it to the project closure 

report should not be hard. It is recommended that you should at least 

make a highlight report at the end of each week throughout the 

https://www.projectpractical.com/8-steps-for-creating-a-project-schedule-that-drive-project-success/


 

 
333 

 

Project Closeout course of a project updating the different stakeholders involved in 

the project of the project’s current progress. 

 If you have those reports, then you can just refer to them and pick 

the key points from each of the weekly reports to combine them into 

one master report to include in your final Project Closure Report. 

6.  Write and Outline the Challenges Faced and Risks 

 Every Project has its challenges and risks. This section will enable 

you to highlight all the challenges that might have been faced 

throughout the course of the project. One thing about challenges 

especially in relation to projects and project management is that they 

can be difficult to foresee. Apart from that, no matter how carefully 

you plan at the inception of the project, you can never plan around 

every potential challenge. 

 For future reference and presentation to stakeholders, you should use 

this section to highlight every challenge you faced throughout the 

course of the project. In addition to listing down the challenges, you 

should also highlight how the challenge affected other aspects of 

your project including your budget and schedule. 

 Besides the challenges, you should also highlight the risks faced. 

Risks can be anything from the weather, workplace safety, or even 

money.  

7. Write About the Lessons Learned During Implementation 

 One source of valuable lessons for any project are the challenges. 

When you overcome the challenges faced when doing a process, 

chances are, you will learn one or two things. Use this section of 

your Project Closure Report to highlight what you learned. 

 During the project, you will also be working with different 

stakeholders from different industries. Sometimes these stakeholders 

can teach you different techniques to help work get done faster 

which is valuable. If you learned such techniques from the various 

stakeholders, you would have worked with throughout the project 

implementation, then you use this section to those lessons. 

 The reason why it’s important to note down the lessons learned in 

this project closing document is that later on when doing another 

project, you can always reference the report of your previous project 

to look for common pitfalls and how you can avoid those pitfalls. 

Conclusion 

A Project Closure Report is an important document that signifies the 

formal project closing. One thing to remember when working on the report 

is to pay attention to detail especially on performance analysis. Paying 



   

 
334 

Software Project  

Management 

 

334 

attention to detail especially when a project goes over budget will help you 

avoid falling into the same pitfalls in the future. 

15.3 SUMMARY 

 In this Project Closeout chapter, you learned about what is  project 

closeout ?, HOW To Close a Project? Reasons for Project Closure,  

Project Closure Process, performing a Financial Closure, Project Closeout 

Report You also saw the Importance of closing a project, along with that, 

Steps to Writing a Project Closure Report ,you saw Types of Project 

Closure, Project closure helps avoid mistake etc. Still, you had a doubt go 

through references and bibliography                                                                                                                                                                        

15.4 EXERCISE: - 

Q.1 What are the five major activities for closing a project? 

Q.2 Write Reasons for project closure. 

Q.3 Write Importance of project closure. 

Q.4 Write types of Project Closure. 

Q.5 Write Steps to Closing a Project. 

Q.6 What is Financial Closure? 

Q.7 Write  Important issues in Financing  of Project. 

Q.8 Write the Keys to a Faster financial Close 

Q.9 What is a Project Closure Report? 

Q.10 Write steps to writing a Project Closure Report. 

15.5 LIST OF BOOKS AND REFERENCES 

1. Software Project Management Bob Hughes, Mike Cotterell, Rajib 

Mall TMH 6 th 2018 

2. Project Management and Tools & Technologies – An overview 

Shailesh Mehta SPD 1st 2017  

3. Software Project Management Walker Royce Pearson 2005 

4. https://blog.spendesk.com  

5. https://www.netsuite.com 

6. https://www2.deloitte.com/content/dam/Deloitte/global/ 

Documents/Technology/gx-cons-tech-sap-five-signs-financial-close-

process-broken.pdf (for financial closure) 

7. https://www.method123.com 

 


	0 starting pages
	1 Chapter 1 Unit I Introduction to Software Project Management (1-24)
	2 Chapter 2 Unit I Project evaluation and Programme Management (26-52)
	3 Chapter 3 Unit I Introduction to stepwise project planning (53-76)
	4 Unit II-chapter 4 (77-100)
	5 Unit II- chapter 5 (101-130)
	6 Unit II - chapter 6 (131-147)
	7 Chapter 7 Unit III ACTIVITY PLANNING (148-176)
	8 Chapter 8 Unit III RISK MANAGEMENT (177-196)
	9 Chapter 9 Unit III RESOURCE ALLOCATION (197-205)
	10 Chapter 10 Unit IV Monitoring and Control (206-229)
	11 Chapter 11 Unit IV Managing Contracts (230-245)
	12 Chapter 12 Unit IV Managing People in Software Environment (246-262)
	13 Unit V- Chapter 13 WORKING IN TEAMS (263-289)
	14 Unti V - Chapter 14 SOFTWARE QUALITY (290-317)
	15 Unit V- Chapter 15 PROJECT CLOSEOUT (318-334)

